Sedigh-Sarvestani Madineh, Albers David J, Gluckman Bruce J
Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA 16802, USA.
Annu Int Conf IEEE Eng Med Biol Soc. 2012;2012:5437-40. doi: 10.1109/EMBC.2012.6347224.
We know much about the glucose regulatory system, yet the application of this knowledge is limited because simultaneous measurements of insulin and glucose are difficult to obtain. We present a data assimilation framework for combining sparse measurements of the glucose regulatory system, available in the intensive care unit setting, with a nonlinear computational model to estimate unmeasured variables and unknown parameters. We also demonstrate a method for choosing the best variables for measurement. We anticipate that this framework will improve glucose maintenance therapies and shed light on the underlying biophysical process.
我们对葡萄糖调节系统了解颇多,但由于难以同时获取胰岛素和葡萄糖的测量值,这些知识的应用受到限制。我们提出了一种数据同化框架,用于将重症监护病房环境中可获得的葡萄糖调节系统的稀疏测量值与非线性计算模型相结合,以估计未测量的变量和未知参数。我们还展示了一种选择最佳测量变量的方法。我们预计该框架将改善葡萄糖维持疗法,并揭示潜在的生物物理过程。