Ofner Patrick, Müller-Putz Gernot R
Institute of Knowledge Discovery, Graz University of Technology, Krenngasse 37, 8010 Graz, Austria.
Annu Int Conf IEEE Eng Med Biol Soc. 2012;2012:6406-9. doi: 10.1109/EMBC.2012.6347460.
A brain-computer interface (BCI) can be used to control a limb neuroprosthesis with motor imaginations (MI) to restore limb functionality of paralyzed persons. However, existing BCIs lack a natural control and need a considerable amount of training time or use invasively recorded biosignals. We show that it is possible to decode velocities and positions of executed arm movements from electroencephalography signals using a new paradigm without external targets. This is a step towards a non-invasive BCI which uses natural MI. Furthermore, training time will be reduced, because it is not necessary to learn new mental strategies.
脑机接口(BCI)可用于通过运动想象(MI)来控制肢体神经假体,以恢复瘫痪者的肢体功能。然而,现有的脑机接口缺乏自然控制,需要大量的训练时间,或者使用侵入性记录的生物信号。我们表明,使用一种无需外部目标的新范式,从脑电图信号中解码执行手臂运动的速度和位置是可能的。这是朝着使用自然运动想象的非侵入性脑机接口迈出的一步。此外,训练时间将会减少,因为无需学习新的思维策略。