Laboratoire des Matériaux Semiconducteurs, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland.
Nat Mater. 2013 May;12(5):439-44. doi: 10.1038/nmat3557. Epub 2013 Feb 3.
Quantum dots embedded within nanowires represent one of the most promising technologies for applications in quantum photonics. Whereas the top-down fabrication of such structures remains a technological challenge, their bottom-up fabrication through self-assembly is a potentially more powerful strategy. However, present approaches often yield quantum dots with large optical linewidths, making reproducibility of their physical properties difficult. We present a versatile quantum-dot-in-nanowire system that reproducibly self-assembles in core-shell GaAs/AlGaAs nanowires. The quantum dots form at the apex of a GaAs/AlGaAs interface, are highly stable, and can be positioned with nanometre precision relative to the nanowire centre. Unusually, their emission is blue-shifted relative to the lowest energy continuum states of the GaAs core. Large-scale electronic structure calculations show that the origin of the optical transitions lies in quantum confinement due to Al-rich barriers. By emitting in the red and self-assembling on silicon substrates, these quantum dots could therefore become building blocks for solid-state lighting devices and third-generation solar cells.
量子点嵌入纳米线中代表了量子光子学应用中最有前途的技术之一。虽然这种结构的自上而下的制造仍然是一项技术挑战,但通过自组装进行的自下而上的制造是一种更强大的策略。然而,目前的方法往往会产生具有较大光学线宽的量子点,这使得它们的物理性质难以重现。我们提出了一种通用的量子点-纳米线系统,该系统可在 GaAs/AlGaAs 纳米线中重复自组装。量子点在 GaAs/AlGaAs 界面的顶点形成,非常稳定,可以相对于纳米线中心以纳米级精度定位。不同寻常的是,它们的发射相对于 GaAs 核的最低能量连续体状态蓝移。大规模电子结构计算表明,光学跃迁的起源在于富 Al 势垒引起的量子限制。由于这些量子点在红色波段发射并自组装在硅衬底上,因此它们可能成为固态照明器件和第三代太阳能电池的构建块。