Suppr超能文献

利用许多受生存结局监督的特征变量推断潜在的异质性。

Inferring latent heterogeneity using many feature variables supervised by survival outcome.

机构信息

Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA.

Incyte Corporation, Wilmington, Delaware, USA.

出版信息

Stat Med. 2021 Jun 15;40(13):3181-3195. doi: 10.1002/sim.8972. Epub 2021 Apr 5.

Abstract

In cancer studies, it is important to understand disease heterogeneity among patients so that precision medicine can particularly target high-risk patients at the right time. Many feature variables such as demographic variables and biomarkers, combined with a patient's survival outcome, can be used to infer such latent heterogeneity. In this work, we propose a mixture model to model each patient's latent survival pattern, where the mixing probabilities for latent groups are modeled through a multinomial distribution. The Bayesian information criterion is used for selecting the number of latent groups. Furthermore, we incorporate variable selection with the adaptive lasso into inference so that only a few feature variables will be selected to characterize the latent heterogeneity. We show that our adaptive lasso estimator has oracle properties when the number of parameters diverges with the sample size. The finite sample performance is evaluated by the simulation study, and the proposed method is illustrated by two datasets.

摘要

在癌症研究中,了解患者之间的疾病异质性很重要,这样精准医学才能在正确的时间特别针对高危患者。许多特征变量,如人口统计学变量和生物标志物,结合患者的生存结果,可以用来推断这种潜在的异质性。在这项工作中,我们提出了一种混合模型来模拟每个患者的潜在生存模式,其中潜在组的混合概率通过多项分布进行建模。贝叶斯信息准则用于选择潜在组的数量。此外,我们将变量选择与自适应套索结合到推断中,以便仅选择少数特征变量来描述潜在的异质性。当参数数量随样本量发散时,我们证明了我们的自适应套索估计器具有 oracle 性质。通过模拟研究评估了有限样本性能,并通过两个数据集说明了所提出的方法。

相似文献

3
Mixture survival trees for cancer risk classification.混合生存树用于癌症风险分类。
Lifetime Data Anal. 2022 Jul;28(3):356-379. doi: 10.1007/s10985-022-09552-w. Epub 2022 Apr 29.
4
Inference on latent factor models for informative censoring.针对信息删失的潜在因子模型的推断。
Stat Methods Med Res. 2022 May;31(5):801-820. doi: 10.1177/09622802211057290. Epub 2022 Jan 25.
10
The Bayesian adaptive lasso regression.贝叶斯自适应套索回归。
Math Biosci. 2018 Sep;303:75-82. doi: 10.1016/j.mbs.2018.06.004. Epub 2018 Jun 18.

本文引用的文献

5
Simultaneous feature selection and clustering using mixture models.使用混合模型进行同步特征选择和聚类
IEEE Trans Pattern Anal Mach Intell. 2004 Sep;26(9):1154-66. doi: 10.1109/TPAMI.2004.71.
8
The lasso method for variable selection in the Cox model.Cox模型中用于变量选择的套索方法。
Stat Med. 1997 Feb 28;16(4):385-95. doi: 10.1002/(sici)1097-0258(19970228)16:4<385::aid-sim380>3.0.co;2-3.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验