Suppr超能文献

让数据共享有意义:一种基于出版物的解决方案。

Making data sharing count: a publication-based solution.

机构信息

Max Planck Institute for Cognitive and Brain Sciences Leipzig, Germany.

出版信息

Front Neurosci. 2013 Feb 6;7:9. doi: 10.3389/fnins.2013.00009. eCollection 2013.

Abstract

The neuroimaging community has been increasingly called up to openly share data. Although data sharing has been a cornerstone of large-scale data consortia, the incentive for the individual researcher remains unclear. Other fields have benefited from embracing a data publication form - the data paper - that allows researchers to publish their datasets as a citable scientific publication. Such publishing mechanisms both give credit that is recognizable within the scientific ecosystem, and also ensure the quality of the published data and metadata through the peer review process. We discuss the specific challenges of adapting data papers to the needs of the neuroimaging community, and we propose guidelines for the structure as well as review process.

摘要

神经影像学领域越来越多地呼吁公开分享数据。尽管数据共享一直是大型数据联盟的基石,但个人研究人员的激励机制仍不清楚。其他领域已经受益于采用数据发布形式——数据论文,允许研究人员将其数据集作为可引用的科学出版物发布。这种发布机制既能在科学生态系统中获得可识别的认可,又能通过同行评审过程确保发布数据和元数据的质量。我们讨论了将数据论文适应神经影像学领域需求的具体挑战,并提出了结构和审查流程的指南。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/62f9/3565154/e69ea5221061/fnins-07-00009-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验