文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

利用自闭症脑成像数据交换 II 增强自闭症连接组学研究。

Enhancing studies of the connectome in autism using the autism brain imaging data exchange II.

机构信息

The Child Study Center at NYU Langone Medical Center, New York, New York 10016, USA.

Child Mind Institute, New York, New York 10022, USA.

出版信息

Sci Data. 2017 Mar 14;4:170010. doi: 10.1038/sdata.2017.10.


DOI:10.1038/sdata.2017.10
PMID:28291247
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC5349246/
Abstract

The second iteration of the Autism Brain Imaging Data Exchange (ABIDE II) aims to enhance the scope of brain connectomics research in Autism Spectrum Disorder (ASD). Consistent with the initial ABIDE effort (ABIDE I), that released 1112 datasets in 2012, this new multisite open-data resource is an aggregate of resting state functional magnetic resonance imaging (MRI) and corresponding structural MRI and phenotypic datasets. ABIDE II includes datasets from an additional 487 individuals with ASD and 557 controls previously collected across 16 international institutions. The combination of ABIDE I and ABIDE II provides investigators with 2156 unique cross-sectional datasets allowing selection of samples for discovery and/or replication. This sample size can also facilitate the identification of neurobiological subgroups, as well as preliminary examinations of sex differences in ASD. Additionally, ABIDE II includes a range of psychiatric variables to inform our understanding of the neural correlates of co-occurring psychopathology; 284 diffusion imaging datasets are also included. It is anticipated that these enhancements will contribute to unraveling key sources of ASD heterogeneity.

摘要

自闭症脑成像数据交换(ABIDE II)的第二个迭代旨在增强自闭症谱系障碍(ASD)的脑连接组学研究的范围。与最初的 ABIDE 努力(ABIDE I)一致,该研究于 2012 年发布了 1112 个数据集,这个新的多站点开放数据资源是静息态功能磁共振成像(MRI)和相应的结构 MRI 以及表型数据集的集合。ABIDE II 包括来自另外 487 名 ASD 患者和 557 名对照者的数据集,这些数据集此前是在 16 个国际机构中收集的。ABIDE I 和 ABIDE II 的组合为研究人员提供了 2156 个独特的横断面数据集,允许选择用于发现和/或复制的样本。这个样本量还可以促进神经生物学亚组的识别,以及对 ASD 中性别差异的初步研究。此外,ABIDE II 还包括一系列精神科变量,以告知我们对共病精神病理学的神经相关性的理解;还包括 284 个扩散成像数据集。预计这些改进将有助于揭示 ASD 异质性的关键来源。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2e39/5349246/235e524ca1fe/sdata201710-f4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2e39/5349246/fe2e48fbaafe/sdata201710-f1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2e39/5349246/2cc044c74794/sdata201710-f2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2e39/5349246/08d09ae8474e/sdata201710-f3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2e39/5349246/235e524ca1fe/sdata201710-f4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2e39/5349246/fe2e48fbaafe/sdata201710-f1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2e39/5349246/2cc044c74794/sdata201710-f2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2e39/5349246/08d09ae8474e/sdata201710-f3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2e39/5349246/235e524ca1fe/sdata201710-f4.jpg

相似文献

[1]
Enhancing studies of the connectome in autism using the autism brain imaging data exchange II.

Sci Data. 2017-3-14

[2]
Diagnosis of Autism Spectrum Disorders in Young Children Based on Resting-State Functional Magnetic Resonance Imaging Data Using Convolutional Neural Networks.

J Digit Imaging. 2019-12

[3]
Editorial: Mapping the Miswired Connectome in Autism Spectrum Disorder.

J Am Acad Child Adolesc Psychiatry. 2020-1-9

[4]
Alterations in Connectome Dynamics in Autism Spectrum Disorder: A Harmonized Mega- and Meta-analysis Study Using the Autism Brain Imaging Data Exchange Dataset.

Biol Psychiatry. 2022-6-1

[5]
The autism brain imaging data exchange: towards a large-scale evaluation of the intrinsic brain architecture in autism.

Mol Psychiatry. 2013-6-18

[6]
Diagnosis-informed connectivity subtyping discovers subgroups of autism with reproducible symptom profiles.

Neuroimage. 2022-8-1

[7]
Idiosyncratic organization of cortical networks in autism spectrum disorder.

Neuroimage. 2018-1-31

[8]
Improving the detection of autism spectrum disorder by combining structural and functional MRI information.

Neuroimage Clin. 2020

[9]
Identification of segregated regions in the functional brain connectome of autistic patients by a combination of fuzzy spectral clustering and entropy analysis.

J Psychiatry Neurosci. 2016-3

[10]
Somatosensory Regions Show Limited Functional Connectivity Differences in Youth with Autism Spectrum Disorder.

Brain Connect. 2018-11

引用本文的文献

[1]
High-precision machine learning identifies a reproducible functional connectivity signature of autism spectrum diagnosis in a subset of individuals.

Gigascience. 2025-1-6

[2]
Comparative analysis of supervised and self-supervised learning with small and imbalanced medical imaging datasets.

Sci Rep. 2025-9-2

[3]
Lifespan Tree of Brain Anatomy: Diagnostic Values for Motor and Cognitive Neurodegenerative Diseases.

Hum Brain Mapp. 2025-9

[4]
Hidden Rhythms of a Developing Brain: Multimetric rs-fMRI Insights Into Typical Youth Maturation.

Hum Brain Mapp. 2025-9

[5]
When no answer is better than a wrong answer: A causal perspective on batch effects.

Imaging Neurosci (Camb). 2025-1-29

[6]
Challenges in multi-task learning for fMRI-based diagnosis: Benefits for psychiatric conditions and CNVs would likely require thousands of patients.

Imaging Neurosci (Camb). 2024-7-26

[7]
GPT-based normative models of brain sMRI correlate with dimensional psychopathology.

Imaging Neurosci (Camb). 2024-6-26

[8]
FONDUE: Robust resolution-invariant denoising of MR images using Nested UNets.

Imaging Neurosci (Camb). 2024-11-21

[9]
BrainQCNet: A Deep Learning attention-based model for the automated detection of artifacts in brain structural MRI scans.

Imaging Neurosci (Camb). 2024-10-1

[10]
Diffusion deep learning for brain age prediction and longitudinal tracking in children through adulthood.

Imaging Neurosci (Camb). 2024-3-25

本文引用的文献

[1]
Promises, Pitfalls, and Basic Guidelines for Applying Machine Learning Classifiers to Psychiatric Imaging Data, with Autism as an Example.

Front Psychiatry. 2016-12-1

[2]
Deriving reproducible biomarkers from multi-site resting-state data: An Autism-based example.

Neuroimage. 2016-11-16

[3]
Functional connectivity differences in autism during face and car recognition: underconnectivity and atypical age-related changes.

Dev Sci. 2016-10-16

[4]
A theoretical rut: revisiting and critically evaluating the generalized under/over-connectivity hypothesis of autism.

Dev Sci. 2016-7

[5]
A Tool for Interactive Data Visualization: Application to Over 10,000 Brain Imaging and Phantom MRI Data Sets.

Front Neuroinform. 2016-3-15

[6]
Resting-state functional connectivity predicts longitudinal change in autistic traits and adaptive functioning in autism.

Proc Natl Acad Sci U S A. 2015-12-1

[7]
An empirical Bayes normalization method for connectivity metrics in resting state fMRI.

Front Neurosci. 2015-9-16

[8]
From the genetic architecture to synaptic plasticity in autism spectrum disorder.

Nat Rev Neurosci. 2015-9

[9]
An open science resource for establishing reliability and reproducibility in functional connectomics.

Sci Data. 2014-12-9

[10]
Age-related changes in intrinsic function of the superior temporal sulcus in autism spectrum disorders.

Soc Cogn Affect Neurosci. 2015-10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索