文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

经脂质乳预处理后,纳米级和微米级超顺磁性氧化铁颗粒的网状内皮系统清除率降低,血液半衰期延长,免疫细胞标记增加。

Decreased reticuloendothelial system clearance and increased blood half-life and immune cell labeling for nano- and micron-sized superparamagnetic iron-oxide particles upon pre-treatment with Intralipid.

作者信息

Liu Li, Hitchens T Kevin, Ye Qing, Wu Yijen, Barbe Brent, Prior Devin E, Li Wendy F, Yeh Fang-Cheng, Foley Lesley M, Bain Daniel J, Ho Chien

机构信息

Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA, USA.

出版信息

Biochim Biophys Acta. 2013 Jun;1830(6):3447-53. doi: 10.1016/j.bbagen.2013.01.021. Epub 2013 Feb 8.


DOI:10.1016/j.bbagen.2013.01.021
PMID:23396002
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC3640706/
Abstract

BACKGROUND: Superparamagnetic iron-oxide nanoparticles are useful as contrast agents for anatomical, functional and cellular MRI, drug delivery agents, and diagnostic biosensors. Nanoparticles are generally cleared by the reticuloendothelial system (RES), in particular taken up by Kupffer cells in the liver, limiting particle bioavailability and in-vivo applications. Strategies that decrease the RES clearance and prolong the circulation residence time of particles can improve the in-vivo targeting efficiency. METHODS: Intralipid 20.0%, an FDA approved nutritional supplement, was intravenously administered in rats at the clinical dose (2g/kg) 1h before intravenous injection of ultra-small superparamagnetic iron-oxide (USPIO) or micron-sized paramagnetic iron-oxide (MPIO) particles. Blood half-life, monocyte labeling efficiency, and particle biodistribution were assessed by magnetic resonance relaxometry, flow cytometry, inductively-coupled plasma MS, and histology. RESULTS: Pre-treatment with Intralipid resulted in a 3.1-fold increase in USPIO blood half-life and a 2-fold increase in USPIO-labeled monocytes. A 2.5-fold increase in MPIO blood half-life and a 5-fold increase in MPIO-labeled monocytes were observed following Intralipid pre-treatment, with a 3.2-fold increase in mean iron content up to 2.60pg Fe/monocyte. With Intralipid, there was a 49.2% and 45.1% reduction in liver uptake vs. untreated controls at 48h for USPIO and MPIO, respectively. CONCLUSIONS: Intralipid pre-treatment significantly decreases initial RES uptake and increases in-vivo circulation and blood monocyte labeling efficiency for nano- and micron-sized superparamagnetic iron-oxide particles. GENERAL SIGNIFICANCE: Our findings can have broad applications for imaging and drug delivery applications, increasing the bioavailability of nano- and micron-sized particles for target sites other than the liver.

摘要

背景:超顺磁性氧化铁纳米颗粒可用作解剖学、功能和细胞磁共振成像的造影剂、药物递送剂及诊断生物传感器。纳米颗粒通常由网状内皮系统(RES)清除,特别是被肝脏中的库普弗细胞摄取,这限制了颗粒的生物利用度及体内应用。降低RES清除率并延长颗粒循环驻留时间的策略可提高体内靶向效率。 方法:在静脉注射超小超顺磁性氧化铁(USPIO)或微米级顺磁性氧化铁(MPIO)颗粒前1小时,以临床剂量(2g/kg)给大鼠静脉注射FDA批准的营养补充剂20.0%脂肪乳剂。通过磁共振弛豫测量法、流式细胞术、电感耦合等离子体质谱和组织学评估血液半衰期、单核细胞标记效率及颗粒生物分布。 结果:脂肪乳剂预处理使USPIO血液半衰期增加3.1倍,USPIO标记的单核细胞增加2倍。脂肪乳剂预处理后,MPIO血液半衰期增加2.5倍,MPIO标记的单核细胞增加5倍,平均铁含量增加3.2倍,达到2.60pg铁/单核细胞。使用脂肪乳剂时,48小时时USPIO和MPIO的肝脏摄取量分别比未处理的对照组降低49.2%和45.1%。 结论:脂肪乳剂预处理可显著降低RES的初始摄取,并提高纳米级和微米级超顺磁性氧化铁颗粒的体内循环及血液单核细胞标记效率。 一般意义:我们的研究结果在成像和药物递送应用方面具有广泛的应用前景,可提高纳米级和微米级颗粒对肝脏以外靶部位的生物利用度。

相似文献

[1]
Decreased reticuloendothelial system clearance and increased blood half-life and immune cell labeling for nano- and micron-sized superparamagnetic iron-oxide particles upon pre-treatment with Intralipid.

Biochim Biophys Acta. 2013-6

[2]
MRI detection of macrophages labeled using micrometer-sized iron oxide particles.

J Magn Reson Imaging. 2007-6

[3]
New strategies to prolong the in vivo life span of iron-based contrast agents for MRI.

PLoS One. 2013-10-25

[4]
Effect of composition on biological fate of oil particles after intravenous injection of O/W lipid emulsions.

J Drug Target. 1998

[5]
Hepatic cellular distribution and degradation of iron oxide nanoparticles following single intravenous injection in rats: implications for magnetic resonance imaging.

Cell Tissue Res. 2004-6

[6]
Optimization of molecularly targeted MRI in the brain: empirical comparison of sequences and particles.

Int J Nanomedicine. 2018-7-25

[7]
Intracellular labeling of mouse embryonic stem cell-derived neural progenitor aggregates with micron-sized particles of iron oxide.

Cytotherapy. 2015-1

[8]
Physical and biological characterization of superparamagnetic iron oxide- and ultrasmall superparamagnetic iron oxide-labeled cells: a comparison.

Invest Radiol. 2005-8

[9]
Electron microscopy study of intrahepatic ultrasmall superparamagnetic iron oxide kinetics in the rat. Relation with magnetic resonance imaging.

Biol Cell. 1999-6

[10]
Recent advances in iron oxide nanocrystal technology for medical imaging.

Adv Drug Deliv Rev. 2006-12-1

引用本文的文献

[1]
Uptake Mechanism of Riboflavin-Functionalized Superparamagnetic Iron Oxide Nanoparticles in Triple-Negative Breast Cancer Cells.

ACS Appl Bio Mater. 2025-7-21

[2]
Innovations in Nanoemulsion Technology: Enhancing Drug Delivery for Oral, Parenteral, and Ophthalmic Applications.

Pharmaceutics. 2024-10-17

[3]
Understanding nanoparticle-liver interactions in nanomedicine.

Expert Opin Drug Deliv. 2024-6

[4]
Exploring and Analyzing the Systemic Delivery Barriers for Nanoparticles.

Adv Funct Mater. 2024-2-19

[5]
Rediscovery of mononuclear phagocyte system blockade for nanoparticle drug delivery.

Nat Commun. 2024-5-22

[6]
Comparative Study of Nanoparticle Blood Circulation after Forced Clearance of Own Erythrocytes (Mononuclear Phagocyte System-Cytoblockade) or Administration of Cytotoxic Doxorubicin- or Clodronate-Loaded Liposomes.

Int J Mol Sci. 2023-6-25

[7]
A Systematic Study of Anti-Osteosarcoma Mechanism of pH-Sensitive Charge-Conversion Cinnamaldehyde Polymeric Prodrug Micelles In Vitro.

Biomedicines. 2023-5-25

[8]
Comparative in vivo toxicokinetics of silver powder, nanosilver and soluble silver compounds after oral administration to rats.

Arch Toxicol. 2023-7

[9]
Interplay between Liposomes and IgM: Principles, Challenges, and Opportunities.

Adv Sci (Weinh). 2023-7

[10]
Application of magnetic particle imaging to evaluate nanoparticle fate in rodent joints.

J Control Release. 2023-4

本文引用的文献

[1]
Bioluminescence and magnetic resonance imaging of macrophage homing to experimental abdominal aortic aneurysms.

Mol Imaging. 2012-4

[2]
Tracking T-cells in vivo with a new nano-sized MRI contrast agent.

Nanomedicine. 2012-3-7

[3]
Self-assembling nanocomplexes by combining ferumoxytol, heparin and protamine for cell tracking by magnetic resonance imaging.

Nat Med. 2012-2-26

[4]
Longitudinal study of tumor-associated macrophages during tumor expansion using MRI.

NMR Biomed. 2011-3-24

[5]
Template-free synthesis and encapsulation technique for layer-by-layer polymer nanocarrier fabrication.

ACS Nano. 2011-11-15

[6]
pH-titratable superparamagnetic iron oxide for improved nanoparticle accumulation in acidic tumor microenvironments.

ACS Nano. 2011-11-8

[7]
Synthesis and characterization of biodegradable and thermosensitive polymeric micelles with covalently bound doxorubicin-glucuronide prodrug via click chemistry.

Bioconjug Chem. 2011-11-3

[8]
Modulating pharmacokinetics, tumor uptake and biodistribution by engineered nanoparticles.

PLoS One. 2011-9-13

[9]
Antibody conjugated magnetic iron oxide nanoparticles for cancer cell separation in fresh whole blood.

Biomaterials. 2011-9-14

[10]
A multifunctional core-shell nanoparticle for dendritic cell-based cancer immunotherapy.

Nat Nanotechnol. 2011-9-11

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索