Department of Chemistry and Biochemistry, University of Delaware , Newark, Delaware 19716, United States.
Acc Chem Res. 2013 Sep 17;46(9):2047-58. doi: 10.1021/ar300309s. Epub 2013 Feb 13.
In living organisms, biological molecules often organize into multicomponent complexes. Such assemblies consist of various proteins and carry out essential functions, ranging from cell division, transport, and energy transduction to catalysis, signaling, and viral infectivity. To understand the biological functions of these assemblies, in both healthy and disease states, researchers need to study their three-dimensional architecture and molecular dynamics. To date, the large size, the lack of inherent long-range order, and insolubility have made atomic resolution studies of many protein assemblies challenging or impractical using traditional structural biology methods such as X-ray diffraction and solution NMR spectroscopy. In the past 10 years, we have focused our work on the development and application of magic angle spinning solid-state NMR (MAS NMR) methods to characterize large protein assemblies at atomic-level resolution. In this Account, we discuss the rapid progress in the field of MAS NMR spectroscopy, citing work from our laboratory and others on methodological developments that have facilitated the in-depth analysis of biologically important protein assemblies. We emphasize techniques that yield enhanced sensitivity and resolution, such as fast MAS (spinning frequencies of 40 kHz and above) and nonuniform sampling protocols for data acquisition and processing. We also discuss the experiments for gaining distance restraints and for recoupling anisotropic tensorial interactions under fast MAS conditions. We give an overview of sample preparation approaches when working with protein assemblies. Following the overview of contemporary MAS NMR methods, we present case studies into the structure and dynamics of two classes of biological systems under investigation in our laboratory. We will first turn our attention to cytoskeletal microtubule motor proteins including mammalian dynactin and dynein light chain 8. We will then discuss protein assemblies from the HIV-1 retrovirus.
在生物体内,生物分子经常组织成多组分复合物。这些组装体由各种蛋白质组成,执行从细胞分裂、运输和能量转导到催化、信号传递和病毒感染性等基本功能。为了了解这些组装体在健康和疾病状态下的生物学功能,研究人员需要研究它们的三维结构和分子动力学。迄今为止,由于尺寸大、缺乏固有长程有序性和不溶性,使用传统的结构生物学方法(如 X 射线衍射和溶液 NMR 光谱学)对许多蛋白质组装体进行原子分辨率研究具有挑战性或不切实际。在过去的 10 年中,我们专注于发展和应用魔角旋转固态 NMR(MAS NMR)方法,以在原子水平分辨率下表征大型蛋白质组装体。在本专题介绍中,我们讨论了 MAS NMR 光谱学领域的快速进展,引用了我们实验室和其他实验室在方法学发展方面的工作,这些工作促进了对生物重要蛋白质组装体的深入分析。我们强调了提高灵敏度和分辨率的技术,如快速 MAS(旋转频率为 40 kHz 及以上)和非均匀采样协议,用于数据采集和处理。我们还讨论了在快速 MAS 条件下获得距离约束和重新耦合同向各向异性张量相互作用的实验。我们概述了在处理蛋白质组装体时的样品制备方法。在概述当代 MAS NMR 方法之后,我们将介绍我们实验室正在研究的两类生物系统的结构和动力学的案例研究。我们将首先关注细胞骨架微管马达蛋白,包括哺乳动物的动力蛋白激活蛋白和动力蛋白轻链 8。然后,我们将讨论 HIV-1 逆转录病毒的蛋白质组装体。