Suppr超能文献

在快速MAS下用于高效同核相关光谱学的零量子与自旋扩散联合混合:宽带再耦合及远程相关性检测

Combined zero-quantum and spin-diffusion mixing for efficient homonuclear correlation spectroscopy under fast MAS: broadband recoupling and detection of long-range correlations.

作者信息

Lu Xingyu, Guo Changmiao, Hou Guangjin, Polenova Tatyana

机构信息

Department of Chemistry and Biochemistry, University of Delaware, Newark, DE, 19716, USA,

出版信息

J Biomol NMR. 2015 Jan;61(1):7-20. doi: 10.1007/s10858-014-9875-6. Epub 2014 Nov 25.

Abstract

Fast magic angle spinning (MAS) NMR spectroscopy is emerging as an essential analytical and structural biology technique. Large resolution and sensitivity enhancements observed under fast MAS conditions enable structural and dynamics analysis of challenging systems, such as large macromolecular assemblies and isotopically dilute samples, using only a fraction of material required for conventional experiments. Homonuclear dipolar-based correlation spectroscopy constitutes a centerpiece in the MAS NMR methodological toolbox, and is used essentially in every biological and organic system for deriving resonance assignments and distance restraints information necessary for structural analysis. Under fast MAS conditions (rotation frequencies above 35-40 kHz), dipolar-based techniques that yield multi-bond correlations and non-trivial distance information are ineffective and suffer from low polarization transfer efficiency. To overcome this limitation, we have developed a family of experiments, CORD-RFDR. These experiments exploit the advantages of both zero-quantum RFDR and spin-diffusion based CORD methods, and exhibit highly efficient and broadband dipolar recoupling across the entire spectrum, for both short-range and long-range correlations. We have verified the performance of the CORD-RFDR sequences experimentally on a U-(13)C,(15)N-MLF tripeptide and by numerical simulations. We demonstrate applications of 2D CORD-RFDR correlation spectroscopy in dynein light chain LC8 and HIV-1 CA tubular assemblies. In the CORD-RFDR spectra of LC8 acquired at the MAS frequency of 40 kHz, many new intra- and inter-residue correlations are detected, which were not observed with conventional dipolar recoupling sequences. At a moderate MAS frequency of 14 kHz, the CORD-RFDR experiment exhibits excellent performance as well, as demonstrated in the HIV-1 CA tubular assemblies. Taken together, the results indicate that CORD-RFDR experiment is beneficial in a broad range of conditions, including both high and moderate MAS frequencies and magnetic fields.

摘要

快速魔角旋转(MAS)核磁共振光谱正成为一种重要的分析和结构生物学技术。在快速MAS条件下观察到的分辨率和灵敏度的大幅提高,使得仅使用传统实验所需材料的一小部分,就能对具有挑战性的系统进行结构和动力学分析,比如大型大分子聚集体和同位素稀释样品。基于同核偶极的相关光谱是MAS NMR方法工具箱的核心内容,并且基本上用于每个生物和有机系统,以获取结构分析所需的共振归属和距离限制信息。在快速MAS条件下(旋转频率高于35 - 40 kHz),产生多键相关性和重要距离信息的基于偶极的技术效率低下且极化转移效率低。为了克服这一限制,我们开发了一系列实验,即CORD - RFDR。这些实验利用了零量子RFDR和基于自旋扩散的CORD方法的优点,并且在整个光谱范围内展示了高效且宽带的偶极重新耦合,适用于短程和长程相关性。我们已经通过在U - (13)C,(15)N - MLF三肽上的实验以及数值模拟验证了CORD - RFDR序列的性能。我们展示了二维CORD - RFDR相关光谱在动力蛋白轻链LC8和HIV - 1 CA管状聚集体中的应用。在以40 kHz的MAS频率采集的LC8的CORD - RFDR光谱中,检测到了许多新的残基内和残基间相关性,这些相关性在传统偶极重新耦合序列中未被观察到。在14 kHz的中等MAS频率下,CORD - RFDR实验也表现出优异的性能,如在HIV - 1 CA管状聚集体中所示。综上所述,结果表明CORD - RFDR实验在广泛的条件下都有益处,包括高和中等MAS频率以及磁场条件。

相似文献

4
Phase cycling schemes for finite-pulse-RFDR MAS solid state NMR experiments.
J Magn Reson. 2015 Mar;252:55-66. doi: 10.1016/j.jmr.2014.12.010. Epub 2015 Jan 6.
5
Determination of Long-Range Distances by Fast Magic-Angle-Spinning Radiofrequency-Driven F-F Dipolar Recoupling NMR.
J Phys Chem B. 2018 Oct 11;122(40):9302-9313. doi: 10.1021/acs.jpcb.8b06878. Epub 2018 Sep 27.
6
Finite-pulse radio frequency driven recoupling with phase cycling for 2D (1)H/(1)H correlation at ultrafast MAS frequencies.
J Magn Reson. 2014 Jun;243:25-32. doi: 10.1016/j.jmr.2014.03.004. Epub 2014 Mar 20.

引用本文的文献

1
Comparative analysis of polysaccharide and cell wall structure in Aspergillus nidulans and Aspergillus fumigatus by solid-state NMR.
Carbohydr Polym. 2025 Jan 15;348(Pt A):122907. doi: 10.1016/j.carbpol.2024.122907. Epub 2024 Oct 26.
3
Comparative Analysis of Polysaccharide and Cell Wall Structure in and by Solid-State NMR.
bioRxiv. 2024 Aug 16:2024.08.13.607833. doi: 10.1101/2024.08.13.607833.
4
H-Detected Biomolecular NMR under Fast Magic-Angle Spinning.
Chem Rev. 2022 May 25;122(10):9943-10018. doi: 10.1021/acs.chemrev.1c00918. Epub 2022 May 10.
6
H detection and dynamic nuclear polarization-enhanced NMR of Aβ fibrils.
Proc Natl Acad Sci U S A. 2022 Jan 4;119(1). doi: 10.1073/pnas.2114413119.
8
A molecular vision of fungal cell wall organization by functional genomics and solid-state NMR.
Nat Commun. 2021 Nov 3;12(1):6346. doi: 10.1038/s41467-021-26749-z.
9
Evaluation of the Higher Order Structure of Biotherapeutics Embedded in Hydrogels for Bioprinting and Drug Release.
Anal Chem. 2021 Aug 17;93(32):11208-11214. doi: 10.1021/acs.analchem.1c01850. Epub 2021 Aug 2.

本文引用的文献

5
Very-long-distance correlations in proteins revealed by solid-state NMR spectroscopy.
Chemphyschem. 2012 Nov 12;13(16):3585-8. doi: 10.1002/cphc.201200548. Epub 2012 Aug 13.
6
Solid-state NMR spectroscopy of protein complexes.
Methods Mol Biol. 2012;831:303-31. doi: 10.1007/978-1-61779-480-3_17.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验