分析信息仓库 (AIW):一个使用电子健康记录数据进行分析的平台。

The Analytic Information Warehouse (AIW): a platform for analytics using electronic health record data.

机构信息

Department of Biomedical Informatics, Emory University, 36 Eagle Row, Atlanta, GA 30322, USA.

出版信息

J Biomed Inform. 2013 Jun;46(3):410-24. doi: 10.1016/j.jbi.2013.01.005. Epub 2013 Feb 9.

Abstract

OBJECTIVE

To create an analytics platform for specifying and detecting clinical phenotypes and other derived variables in electronic health record (EHR) data for quality improvement investigations.

MATERIALS AND METHODS

We have developed an architecture for an Analytic Information Warehouse (AIW). It supports transforming data represented in different physical schemas into a common data model, specifying derived variables in terms of the common model to enable their reuse, computing derived variables while enforcing invariants and ensuring correctness and consistency of data transformations, long-term curation of derived data, and export of derived data into standard analysis tools. It includes software that implements these features and a computing environment that enables secure high-performance access to and processing of large datasets extracted from EHRs.

RESULTS

We have implemented and deployed the architecture in production locally. The software is available as open source. We have used it as part of hospital operations in a project to reduce rates of hospital readmission within 30days. The project examined the association of over 100 derived variables representing disease and co-morbidity phenotypes with readmissions in 5years of data from our institution's clinical data warehouse and the UHC Clinical Database (CDB). The CDB contains administrative data from over 200 hospitals that are in academic medical centers or affiliated with such centers.

DISCUSSION AND CONCLUSION

A widely available platform for managing and detecting phenotypes in EHR data could accelerate the use of such data in quality improvement and comparative effectiveness studies.

摘要

目的

创建一个分析平台,用于指定和检测电子健康记录(EHR)数据中的临床表型和其他派生变量,以进行质量改进研究。

材料与方法

我们开发了一种分析信息仓库(AIW)的架构。它支持将不同物理模式表示的数据转换为通用数据模型,根据通用模型指定派生变量,以实现其重用,计算派生变量时强制实施不变量,并确保数据转换的正确性和一致性,长期管理派生数据,并将派生数据导出到标准分析工具中。它包括实现这些功能的软件和一个计算环境,该环境能够安全地对从 EHR 中提取的大型数据集进行高性能访问和处理。

结果

我们已经在本地生产环境中实现并部署了该架构。该软件可作为开源使用。我们已经将其用于医院运营项目中,以降低 30 天内的医院再入院率。该项目在我们机构的临床数据仓库和 UHC 临床数据库(CDB)的 5 年数据中,使用 100 多个代表疾病和合并症表型的派生变量,研究了与再入院相关的问题。CDB 包含来自 200 多家医院的管理数据,这些医院属于学术医疗中心或与其有关联。

讨论与结论

一个广泛可用的 EHR 数据管理和检测表型的平台,可以加速此类数据在质量改进和比较效果研究中的应用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索