Suppr超能文献

VAT=TAAT-SAAT:一种创新的人体测量学模型,可在不使用 CT 扫描或 DXA 的情况下预测内脏脂肪组织。

VAT=TAAT-SAAT: innovative anthropometric model to predict visceral adipose tissue without resort to CT-Scan or DXA.

机构信息

Public Health Department, Health Studies Center, Center de Recherche Public-Santé, L-1445 Strassen, Luxembourg.

出版信息

Obesity (Silver Spring). 2013 Jan;21(1):E41-50. doi: 10.1002/oby.20033.

Abstract

OBJECTIVE

To investigate whether a combination of a selected but limited number of anthropometric measurements predicts visceral adipose tissue (VAT) better than other anthropometric measurements, without resort to medical imaging.

HYPOTHESIS

Abdominal anthropometric measurements are total abdominal adipose tissue indicators and global measures of VAT and SAAT (subcutaneous abdominal adipose tissue). Therefore, subtracting the anthropometric measurement the more correlated possible with SAAT while being the least correlated possible with VAT, from the most correlated abdominal anthropometric measurement with VAT while being highly correlated with TAAT, may better predict VAT.

DESIGN AND METHODS

BMI participants' range was from 16.3 to 52.9 kg m(-2) . Anthropometric and abdominal adipose tissues data by computed tomography (CT-Scan) were available in 253 patients (18-78 years) (CHU Nord, Marseille) and used to develop the anthropometric VAT prediction models.

RESULTS

Subtraction of proximal thigh circumference from waist circumference, adjusted to age and/or BMI, predicts better VAT (Women: VAT = 2.15 × Waist C - 3.63 × Proximal Thigh C + 1.46 × Age + 6.22 × BMI - 92.713; R(2) = 0.836. Men: VAT = 6 × Waist C - 4.41 × proximal thigh C + 1.19 × Age - 213.65; R(2) = 0.803) than the best single anthropometric measurement or the association of two anthropometric measurements highly correlated with VAT. Both multivariate models showed no collinearity problem. Selected models demonstrate high sensitivity (97.7% in women, 100% in men). Similar predictive abilities were observed in the validation sample (Women: R(2) = 76%; Men: R(2) = 70%). Bland and Altman method showed no systematic estimation error of VAT.

CONCLUSION

Validated in a large range of age and BMI, our results suggest the usefulness of the anthropometric selected models to predict VAT in Europides (South of France).

摘要

目的

研究在不依赖医学成像的情况下,选择少数几种人体测量学指标的组合是否比其他人体测量学指标更能预测内脏脂肪组织(VAT)。

假设

腹部人体测量指标是腹部总脂肪组织的指标,也是 VAT 和 SAAT(腹部皮下脂肪组织)的整体指标。因此,从与 SAAT 相关性最大但与 VAT 相关性最小的人体测量指标中减去与 VAT 相关性最大但与 TAAT(腹部内脏脂肪组织)高度相关的人体测量指标,可能会更好地预测 VAT。

设计和方法

BMI 参与者的范围为 16.3 至 52.9 kg m(-2)。253 名(18-78 岁)患者(马赛北部大学医疗中心)的人体测量和腹部脂肪组织数据可通过计算机断层扫描(CT 扫描)获得,并用于开发人体测量学 VAT 预测模型。

结果

经年龄和/或 BMI 调整后的近端大腿围与腰围的差值能更好地预测 VAT(女性:VAT = 2.15×WC-3.63×PT 围+1.46×年龄+6.22×BMI-92.713;R(2) = 0.836。男性:VAT = 6×WC-4.41×近端大腿 C+1.19×年龄-213.65;R(2) = 0.803),优于最佳单项人体测量指标或与 VAT 高度相关的两种人体测量指标的组合。两个多变量模型均未显示出共线性问题。所选模型具有较高的灵敏度(女性 97.7%,男性 100%)。在验证样本中观察到类似的预测能力(女性:R(2) = 76%;男性:R(2) = 70%)。Bland 和 Altman 方法未显示 VAT 的系统估计误差。

结论

在广泛的年龄和 BMI 范围内得到验证,我们的结果表明,在欧洲人(法国南部)中,这些人体测量学选择模型在预测 VAT 方面具有一定的实用性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7c31/3618381/bc8710427b5e/oby0021-0E41-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验