Suppr超能文献

混淆环境颜色和分布形状会导致对物种灭绝风险的低估。

Confounding environmental colour and distribution shape leads to underestimation of population extinction risk.

机构信息

Population Ecology Group, Institut Mediterrani d'Estudis Avançats (UIB-CSIC), Esporles, Illes Balears, Spain.

出版信息

PLoS One. 2013;8(2):e55855. doi: 10.1371/journal.pone.0055855. Epub 2013 Feb 11.

Abstract

The colour of environmental variability influences the size of population fluctuations when filtered through density dependent dynamics, driving extinction risk through dynamical resonance. Slow fluctuations (low frequencies) dominate in red environments, rapid fluctuations (high frequencies) in blue environments and white environments are purely random (no frequencies dominate). Two methods are commonly employed to generate the coloured spatial and/or temporal stochastic (environmental) series used in combination with population (dynamical feedback) models: autoregressive [AR(1)] and sinusoidal (1/f) models. We show that changing environmental colour from white to red with 1/f models, and from white to red or blue with AR(1) models, generates coloured environmental series that are not normally distributed at finite time-scales, potentially confounding comparison with normally distributed white noise models. Increasing variability of sample Skewness and Kurtosis and decreasing mean Kurtosis of these series alter the frequency distribution shape of the realised values of the coloured stochastic processes. These changes in distribution shape alter patterns in the probability of single and series of extreme conditions. We show that the reduced extinction risk for undercompensating (slow growing) populations in red environments previously predicted with traditional 1/f methods is an artefact of changes in the distribution shapes of the environmental series. This is demonstrated by comparison with coloured series controlled to be normally distributed using spectral mimicry. Changes in the distribution shape that arise using traditional methods lead to underestimation of extinction risk in normally distributed, red 1/f environments. AR(1) methods also underestimate extinction risks in traditionally generated red environments. This work synthesises previous results and provides further insight into the processes driving extinction risk in model populations. We must let the characteristics of known natural environmental covariates (e.g., colour and distribution shape) guide us in our choice of how to best model the impact of coloured environmental variation on population dynamics.

摘要

环境变异性的颜色会通过密度依赖动力学过滤,从而影响种群波动的大小,通过动力学共振驱动灭绝风险。在红色环境中,缓慢波动(低频)占主导地位,在蓝色环境和白色环境中,快速波动(高频)占主导地位,而白色环境则是纯粹随机的(没有频率占主导地位)。通常采用两种方法来生成与种群(动力反馈)模型结合使用的彩色空间和/或时间随机(环境)序列:自回归[AR(1)]和正弦(1/f)模型。我们表明,使用 1/f 模型将环境颜色从白色变为红色,或者使用 AR(1)模型将环境颜色从白色变为红色或蓝色,会生成在有限时间尺度上不是正态分布的彩色环境序列,这可能会干扰与正态分布白噪声模型的比较。增加这些序列的样本偏度和峰度的变异性,并降低其均值峰度,会改变实现的彩色随机过程的实值频率分布形状。这些分布形状的变化改变了单极值条件和极值序列出现的概率模式。我们表明,以前使用传统 1/f 方法预测的红色环境中补偿不足(生长缓慢)种群的灭绝风险降低是环境序列分布形状变化的一个人为因素。通过与使用频谱模拟控制为正态分布的彩色序列进行比较,证明了这一点。使用传统方法产生的分布形状的变化会导致在正态分布的红色 1/f 环境中低估灭绝风险。AR(1)方法也会低估传统生成的红色环境中的灭绝风险。这项工作综合了以前的结果,并进一步深入了解了驱动模型种群灭绝风险的过程。我们必须让已知自然环境协变量(例如颜色和分布形状)的特征指导我们选择如何最好地模拟彩色环境变化对种群动态的影响。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4c90/3569452/2c112ff22c7a/pone.0055855.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验