Tenorio-Borroto Esvieta, Peñuelas-Rivas Claudia G, Vásquez-Chagoyán Juan C, Castañedo Nilo, Prado-Prado Francisco J, García-Mera Xerardo, González-Díaz Humberto
Department of Organic Chemistry, Faculty of Pharmacy, USC, 15782 Santiago de Compostela, Spain; Centro de Investigación y Estudios Avanzados en Salud Animal, UAEM, 50200, Mexico.
Centro de Investigación y Estudios Avanzados en Salud Animal, UAEM, 50200, Mexico.
Eur J Med Chem. 2014 Jan 24;72:206-20. doi: 10.1016/j.ejmech.2013.08.035. Epub 2013 Nov 22.
Quantitative Structure-Activity (mt-QSAR) techniques may become an important tool for prediction of cytotoxicity and High-throughput Screening (HTS) of drugs to rationalize drug discovery process. In this work, we train and validate by the first time mt-QSAR model using TOPS-MODE approach to calculate drug molecular descriptors and Linear Discriminant Analysis (LDA) function. This model correctly classifies 8258 out of 9000 (Accuracy = 91.76%) multiplexing assay endpoints of 7903 drugs (including both train and validation series). Each endpoint correspond to one out of 1418 assays, 36 molecular and cellular targets, 46 standard type measures, in two possible organisms (human and mouse). After that, we determined experimentally, by the first time, the values of EC50 = 21.58 μg/mL and Cytotoxicity = 23.6% for the anti-microbial/anti-parasite drug G1 over Balb/C mouse peritoneal macrophages using flow cytometry. In addition, the model predicts for G1 only 7 positive endpoints out 1251 cytotoxicity assays (0.56% of probability of cytotoxicity in multiple assays). The results obtained complement the toxicological studies of this important drug. This work adds a new tool to the existing pool of few methods useful for multi-target HTS of ChEMBL and other libraries of compounds towards drug discovery.
定量构效关系(mt-QSAR)技术可能会成为预测细胞毒性和药物高通量筛选(HTS)以合理化药物发现过程的重要工具。在这项工作中,我们首次使用TOPS-MODE方法计算药物分子描述符并结合线性判别分析(LDA)函数来训练和验证mt-QSAR模型。该模型对7903种药物(包括训练集和验证集)的9000个多重检测终点中的8258个进行了正确分类(准确率 = 91.76%)。每个终点对应1418种检测、36个分子和细胞靶点、46种标准类型测量中的一种,涉及两种可能的生物体(人类和小鼠)。之后,我们首次通过流式细胞术实验测定了抗微生物/抗寄生虫药物G1对Balb/C小鼠腹腔巨噬细胞的EC50值 = 21.58 μg/mL和细胞毒性 = 23.6%。此外,该模型在1251项细胞毒性检测中仅预测G1有7个阳性终点(多次检测中细胞毒性概率为0.56%)。所得结果补充了这种重要药物的毒理学研究。这项工作为现有的少数几种对ChEMBL和其他化合物库进行多靶点HTS以用于药物发现的有用方法增添了一种新工具。