Suppr超能文献

可植入的三维唾液球体组装体展示了对神经递质的流体和蛋白质分泌反应。

Implantable three-dimensional salivary spheroid assemblies demonstrate fluid and protein secretory responses to neurotransmitters.

机构信息

Department of Biological Sciences, University of Delaware, Newark, Delaware, USA.

出版信息

Tissue Eng Part A. 2013 Jul;19(13-14):1610-20. doi: 10.1089/ten.TEA.2012.0301. Epub 2013 May 10.

Abstract

Radiation treatment in patients with head and neck tumors commonly results in hyposalivation and xerostomia due to the loss of fluid-secreting salivary acinar cells. Patients develop susceptibility to oral infections, dental caries, impaired speech and swallowing, reducing the quality of life. Clinical management is largely unsatisfactory. The development of a tissue-engineered, implantable salivary gland will greatly benefit patients suffering from xerostomia. This report compares the ability of a 2.5-dimensional (2.5D) and a three-dimensional (3D) hyaluronic acid (HA)-based culture system to support functional salivary units capable of producing fluid and phenotypic proteins. Parotid cells seeded on 2.5D, as well as those encapsulated in 3D HA hydrogels, self-assembled into acini-like structures and expressed functional neurotransmitter receptors. Structures in 3D hydrogels merged to form organized 50 μm spheroids that could be maintained in culture for over 100 days and merged to form structures over 500 μm in size. Treatment of acini-like structures with the β-adrenergic agonists norepinephrine or isoproterenol increased granule production and α-amylase staining in treated structures, demonstrating regain of protein secretion. Upon treatment with the M3 muscarinic agonist acetylcholine, acini-like structures activated the fluid production pathway by increasing intracellular calcium levels. The increase in intracellular calcium seen in structures in the 3D hydrogel culture system was more robust and prolonged than that in 2.5D. To compare the long-term survival and retention of acini-like structures in vivo, cell-seeded 2.5D and 3D hydrogels were implanted into an athymic rat model. Cells in 2.5D failed to maintain organized acini-like structures and dispersed in the surrounding tissue. Encapsulated cells in 3D retained their spheroid structure and structural integrity, along with the salivary biomarkers and maintained viability for over 3 weeks in vivo. This report identifies a novel hydrogel culture system capable of creating and maintaining functional 3D salivary spheroid structures for long periods in vitro that regain both fluid and protein secreting functions and are suitable for tissue restoration.

摘要

头颈部肿瘤患者在接受放射治疗后常因涎腺腺泡细胞丢失而导致唾液分泌减少和口干。患者易发生口腔感染、龋齿、言语和吞咽功能障碍,降低生活质量。临床治疗效果不佳。组织工程化可植入涎腺的发展将极大地造福于口干症患者。本报告比较了 2.5 维(2.5D)和 3 维(3D)透明质酸(HA)培养体系支持产生液体和表型蛋白的功能性涎腺单位的能力。接种在 2.5D 上的腮腺细胞以及包埋在 3D HA 水凝胶中的细胞自组装成类似腺泡的结构并表达功能性神经递质受体。3D 水凝胶中的结构融合形成有组织的 50μm 球体,可以在培养中维持超过 100 天,并融合形成超过 500μm 大小的结构。用β肾上腺素能激动剂去甲肾上腺素或异丙肾上腺素处理类似腺泡的结构会增加颗粒产生和处理结构中的α-淀粉酶染色,表明蛋白分泌功能恢复。用 M3 毒蕈碱激动剂乙酰胆碱处理时,类似腺泡的结构通过增加细胞内钙水平激活液体产生途径。3D 水凝胶培养系统中结构的细胞内钙增加比 2.5D 更为强烈和持久。为了比较类似腺泡结构在体内的长期存活和保留情况,将细胞接种的 2.5D 和 3D 水凝胶植入裸鼠模型。2.5D 中的细胞无法维持有组织的类似腺泡结构,而是分散在周围组织中。3D 中包封的细胞保留了它们的球体结构和结构完整性,以及唾液生物标志物,并在体内存活超过 3 周。本报告确定了一种新的水凝胶培养系统,能够在体外长时间创建和维持功能性 3D 涎腺球体结构,恢复液体和蛋白分泌功能,适用于组织修复。

相似文献

1
Implantable three-dimensional salivary spheroid assemblies demonstrate fluid and protein secretory responses to neurotransmitters.
Tissue Eng Part A. 2013 Jul;19(13-14):1610-20. doi: 10.1089/ten.TEA.2012.0301. Epub 2013 May 10.
2
Functional spheroid organization of human salivary gland cells cultured on hydrogel-micropatterned nanofibrous microwells.
Acta Biomater. 2016 Nov;45:121-132. doi: 10.1016/j.actbio.2016.08.058. Epub 2016 Sep 1.
3
Lumen formation in three-dimensional cultures of salivary acinar cells.
Otolaryngol Head Neck Surg. 2010 Feb;142(2):191-5. doi: 10.1016/j.otohns.2009.10.039.
4
A novel in vivo model for evaluating functional restoration of a tissue-engineered salivary gland.
Laryngoscope. 2014 Feb;124(2):456-61. doi: 10.1002/lary.24297. Epub 2013 Aug 6.
6
Bottom-up assembly of salivary gland microtissues for assessing myoepithelial cell function.
Biomaterials. 2017 Oct;142:124-135. doi: 10.1016/j.biomaterials.2017.07.022. Epub 2017 Jul 14.
7
Primary Salivary Human Stem/Progenitor Cells Undergo Microenvironment-Driven Acinar-Like Differentiation in Hyaluronate Hydrogel Culture.
Stem Cells Transl Med. 2017 Jan;6(1):110-120. doi: 10.5966/sctm.2016-0083. Epub 2016 Aug 18.
8
Organotypic Spheroid Culture to Mimic Radiation-Induced Salivary Hypofunction.
J Dent Res. 2017 Apr;96(4):396-405. doi: 10.1177/0022034516685036. Epub 2017 Jan 3.
9
Growth factors polymerized within fibrin hydrogel promote amylase production in parotid cells.
Tissue Eng Part A. 2013 Oct;19(19-20):2215-25. doi: 10.1089/ten.TEA.2012.0674. Epub 2013 May 25.
10
Perlecan domain IV peptide stimulates salivary gland cell assembly in vitro.
Tissue Eng Part A. 2009 Nov;15(11):3309-20. doi: 10.1089/ten.TEA.2008.0669.

引用本文的文献

2
Three-dimensional in vitro models in head and neck cancer: current trends and applications.
Med Oncol. 2025 May 5;42(6):194. doi: 10.1007/s12032-025-02737-x.
3
Revolutionising oral organoids with artificial intelligence.
Biomater Transl. 2024 Nov 15;5(4):372-389. doi: 10.12336/biomatertransl.2024.04.004. eCollection 2024.
4
Organoids in the oral and maxillofacial region: present and future.
Int J Oral Sci. 2024 Nov 1;16(1):61. doi: 10.1038/s41368-024-00324-w.
5
Bioprinting salivary gland models and their regenerative applications.
BDJ Open. 2024 May 30;10(1):39. doi: 10.1038/s41405-024-00219-2.
7
Salivary Gland Bioengineering.
Bioengineering (Basel). 2023 Dec 26;11(1):28. doi: 10.3390/bioengineering11010028.
8
Microfluidic coaxial 3D bioprinting of cell-laden microfibers and microtubes for salivary gland tissue engineering.
Biomater Adv. 2023 Nov;154:213588. doi: 10.1016/j.bioadv.2023.213588. Epub 2023 Aug 14.
9
Matrix Degradability Contributes to the Development of Salivary Gland Progenitor Cells with Secretory Functions.
ACS Appl Mater Interfaces. 2023 Jul 12;15(27):32148-32161. doi: 10.1021/acsami.3c03064. Epub 2023 Jun 26.
10
Slow hydrogel matrix degradation enhances salivary gland mimetic phenotype.
Acta Biomater. 2023 Aug;166:187-200. doi: 10.1016/j.actbio.2023.05.005. Epub 2023 May 5.

本文引用的文献

1
Hyaluronic Acid-Based Hydrogels: from a Natural Polysaccharide to Complex Networks.
Soft Matter. 2012;8(12):3280-3294. doi: 10.1039/C2SM06463D.
2
Laminin active peptide/agarose matrices as multifunctional biomaterials for tissue engineering.
Biomaterials. 2012 Jun;33(16):4118-25. doi: 10.1016/j.biomaterials.2012.02.044. Epub 2012 Mar 10.
3
Formation of post-confluence structure in human parotid gland acinar cells on PLGA through regulation of E-cadherin.
Biomaterials. 2012 Jan;33(2):464-72. doi: 10.1016/j.biomaterials.2011.09.060. Epub 2011 Oct 10.
4
Role of calcium and PKC in salivary mucous cell exocrine secretion.
J Dent Res. 2011 Dec;90(12):1469-76. doi: 10.1177/0022034511422817. Epub 2011 Sep 20.
5
Dissection of calcium signaling events in exocrine secretion.
Neurochem Res. 2011 Jul;36(7):1212-21. doi: 10.1007/s11064-011-0465-7. Epub 2011 May 2.
6
Hyaluronic acid hydrogels for biomedical applications.
Adv Mater. 2011 Mar 25;23(12):H41-56. doi: 10.1002/adma.201003963. Epub 2011 Mar 10.
8
Matrigel improves functional properties of human submandibular salivary gland cell line.
Int J Biochem Cell Biol. 2011 Apr;43(4):622-31. doi: 10.1016/j.biocel.2011.01.001. Epub 2011 Jan 7.
9
Matrigel improves functional properties of primary human salivary gland cells.
Tissue Eng Part A. 2011 May;17(9-10):1229-38. doi: 10.1089/ten.TEA.2010.0297. Epub 2011 Feb 8.
10
Parasympathetic innervation maintains epithelial progenitor cells during salivary organogenesis.
Science. 2010 Sep 24;329(5999):1645-7. doi: 10.1126/science.1192046.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验