Suppr超能文献

研究阿米酰胺类天然产物对克氏锥虫的作用模式。

Examination of the mode of action of the almiramide family of natural products against the kinetoplastid parasite Trypanosoma brucei.

机构信息

Department of Chemistry and Biochemistry, University of California Santa Cruz, Santa Cruz, California 95064, United States.

出版信息

J Nat Prod. 2013 Apr 26;76(4):630-41. doi: 10.1021/np300834q. Epub 2013 Feb 27.

Abstract

Almiramide C is a marine natural product with low micromolar activity against Leishmania donovani, the causative agent of leishmaniasis. We have now shown that almiramide C is also active against the related parasite Trypanosoma brucei, the causative agent of human African trypanosomiasis. A series of activity-based probes have been synthesized to explore both the molecular target of this compound series in T. brucei lysates and site localization through epifluorescence microscopy. These target identification studies indicate that the almiramides likely perturb glycosomal function through disruption of membrane assembly machinery. Glycosomes, which are organelles specific to kinetoplastid parasites, house the first seven steps of glycolysis and have been shown to be essential for parasite survival in the bloodstream stage. There are currently no reported small-molecule disruptors of glycosome function, making the almiramides unique molecular probes for this understudied parasite-specific organelle. Additionally, examination of toxicity in an in vivo zebrafish model has shown that these compounds have little effect on organism development, even at high concentrations, and has uncovered a potential side effect through localization of fluorescent derivatives to zebrafish neuromast cells. Combined, these results further our understanding of the potential value of this lead series as development candidates against T. brucei.

摘要

阿米尔酰胺 C 是一种具有低微摩尔活性的海洋天然产物,对引起利什曼病的利什曼原虫有活性。我们现在已经证明,阿米尔酰胺 C 对相关寄生虫布氏锥虫也有活性,布氏锥虫是引起人类非洲锥虫病的病原体。我们已经合成了一系列基于活性的探针,以探索该化合物系列在 T. brucei 裂解物中的分子靶标,并通过荧光显微镜进行定位。这些靶标鉴定研究表明,阿米尔酰胺可能通过破坏膜组装机制来扰乱糖基体功能。糖基体是动基体寄生虫特有的细胞器,它包含糖酵解的前七个步骤,并且已经被证明对于寄生虫在血液阶段的生存是必不可少的。目前还没有报道的小分子糖基体功能破坏剂,使阿米尔酰胺成为这个研究不足的寄生虫特异性细胞器的独特分子探针。此外,在体内斑马鱼模型中的毒性研究表明,即使在高浓度下,这些化合物对生物体发育的影响也很小,并通过荧光衍生物在斑马鱼神经嵴细胞中的定位揭示了一种潜在的副作用。综上所述,这些结果进一步加深了我们对该先导系列作为针对 T. brucei 的开发候选药物的潜在价值的理解。

相似文献

2
Involvement of SNARE protein Ykt6 in glycosome biogenesis in Trypanosoma brucei.
Mol Biochem Parasitol. 2017 Dec;218:28-37. doi: 10.1016/j.molbiopara.2017.10.003. Epub 2017 Oct 28.
4
Isolation of Glycosomes from Trypanosoma brucei.
Methods Mol Biol. 2023;2643:33-45. doi: 10.1007/978-1-0716-3048-8_3.
5
Trypanocidal activity of marine natural products.
Mar Drugs. 2013 Oct 22;11(10):4058-82. doi: 10.3390/md11104058.
6
Biogenesis of glycosomes of Trypanosoma brucei: an in vitro model of 3-phosphoglycerate kinase import.
Proc Natl Acad Sci U S A. 1988 Apr;85(8):2598-602. doi: 10.1073/pnas.85.8.2598.
7
Screening a Natural Product-Based Library against Kinetoplastid Parasites.
Molecules. 2017 Oct 12;22(10):1715. doi: 10.3390/molecules22101715.
9
Quinoxaline derivatives as potential antitrypanosomal and antileishmanial agents.
Bioorg Med Chem. 2018 Aug 7;26(14):4065-4072. doi: 10.1016/j.bmc.2018.06.033. Epub 2018 Jun 25.
10
Glycosomes: A comprehensive view of their metabolic roles in T. brucei.
Int J Biochem Cell Biol. 2017 Apr;85:85-90. doi: 10.1016/j.biocel.2017.01.015. Epub 2017 Feb 6.

引用本文的文献

1
Marine Cyanobacteria: A Rich Source of Structurally Unique Anti-Infectives for Drug Development.
Molecules. 2024 Nov 10;29(22):5307. doi: 10.3390/molecules29225307.
2
Marine Natural Products as Novel Treatments for Parasitic Diseases.
Handb Exp Pharmacol. 2025;287:325-393. doi: 10.1007/164_2024_712.
4
Investigation of Antiparasitic Activity of Two Marine Natural Products, Estradiol Benzoate, and Octyl Gallate, on .
Front Pharmacol. 2022 Mar 17;13:841941. doi: 10.3389/fphar.2022.841941. eCollection 2022.
5
Anti-leishmanial compounds from microbial metabolites: a promising source.
Appl Microbiol Biotechnol. 2021 Nov;105(21-22):8227-8240. doi: 10.1007/s00253-021-11610-6. Epub 2021 Oct 9.
6
Influence of -Methylation and Conformation on Almiramide Anti-Leishmanial Activity.
Molecules. 2021 Jun 12;26(12):3606. doi: 10.3390/molecules26123606.
7
Marine Cyanobacteria: A Source of Lead Compounds and their Clinically-Relevant Molecular Targets.
Molecules. 2020 May 8;25(9):2197. doi: 10.3390/molecules25092197.
8
High Throughput and Computational Repurposing for Neglected Diseases.
Pharm Res. 2018 Dec 17;36(2):27. doi: 10.1007/s11095-018-2558-3.
9
Using Tumor Explants for Imaging Mass Spectrometry Visualization of Unlabeled Peptides and Small Molecules.
ACS Med Chem Lett. 2018 May 17;9(7):768-772. doi: 10.1021/acsmedchemlett.8b00091. eCollection 2018 Jul 12.

本文引用的文献

1
Cisplatin and aminoglycoside antibiotics: hearing loss and its prevention.
Anat Rec (Hoboken). 2012 Nov;295(11):1837-50. doi: 10.1002/ar.22578. Epub 2012 Oct 8.
3
High-throughput decoding of antitrypanosomal drug efficacy and resistance.
Nature. 2012 Jan 25;482(7384):232-6. doi: 10.1038/nature10771.
4
A subtle interplay between three Pex11 proteins shapes de novo formation and fission of peroxisomes.
Traffic. 2012 Jan;13(1):157-67. doi: 10.1111/j.1600-0854.2011.01290.x. Epub 2011 Oct 20.
5
Antitrypanosomal activity of fexinidazole, a new oral nitroimidazole drug candidate for treatment of sleeping sickness.
Antimicrob Agents Chemother. 2011 Dec;55(12):5602-8. doi: 10.1128/AAC.00246-11. Epub 2011 Sep 12.
7
Identification of SAP155 as the target of GEX1A (Herboxidiene), an antitumor natural product.
ACS Chem Biol. 2011 Mar 18;6(3):229-33. doi: 10.1021/cb100248e. Epub 2011 Jan 13.
8
Direct identification of a siderophore import protein using synthetic petrobactin ligands.
Angew Chem Int Ed Engl. 2010 Dec 27;49(52):10210-3. doi: 10.1002/anie.201005527.
9
Membrane curvature during peroxisome fission requires Pex11.
EMBO J. 2011 Jan 5;30(1):5-16. doi: 10.1038/emboj.2010.299. Epub 2010 Nov 26.
10
Identification of direct protein targets of small molecules.
ACS Chem Biol. 2011 Jan 21;6(1):34-46. doi: 10.1021/cb100294v. Epub 2010 Nov 30.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验