Suppr超能文献

数据归一化对神经概率图谱创建的影响。

Effect of data normalization on the creation of neuro-probabilistic atlases.

作者信息

D'Haese Pierre-François, Pallavaram Srivatsan, Kao Chris, Neimat Joseph S, Konrad Peter E, Dawant Benoit M

机构信息

Department of Electrical Engineering and Computer Science, Vanderbilt University, Nashville, TN 37235, USA.

出版信息

Stereotact Funct Neurosurg. 2013;91(3):148-52. doi: 10.1159/000345268. Epub 2013 Feb 27.

Abstract

In the past 15 years, rapid improvements in imaging technology and methodology have had a tremendous impact on how we study the human brain. During deep brain stimulation surgeries, detailed anatomical images can be combined with physiological data obtained by microelectrode recordings and microstimulations to address questions relating to the location of specific motor or sensorial functions. The main advantage of techniques such as microelectrode recordings and microstimulations over brain imaging is their ability to localize patient physiological activity with a high degree of spatial resolution. Aggregating data acquired from large populations permits to build what are commonly referred to as statistical atlases. Data points from statistical atlases can be combined to produce probabilistic maps. A crucial step in this process is the intersubject spatial normalization that is required to relate a position in one subject's brain to a position in another subject's brain. In this paper, we study the impact of spatial normalization techniques on building statistical atlases. We find that the Talairach or anterior-posterior commissure coordinate system commonly used in the medical literature produces atlases that are more dispersed than those obtained with normalization methods that rely on nonlinear volumetric image registration. We also find that the maps produced using nonlinear techniques correlate with their expected anatomic positions.

摘要

在过去15年里,成像技术和方法的迅速改进对我们研究人类大脑的方式产生了巨大影响。在深部脑刺激手术过程中,详细的解剖图像可以与通过微电极记录和微刺激获得的生理数据相结合,以解决与特定运动或感觉功能位置相关的问题。微电极记录和微刺激等技术相对于脑成像的主要优势在于,它们能够以高度的空间分辨率定位患者的生理活动。汇总从大量人群中获取的数据有助于构建通常所说的统计图谱。统计图谱中的数据点可以组合起来生成概率图。这一过程中的关键步骤是受试者间空间归一化,它是将一个受试者大脑中的位置与另一个受试者大脑中的位置相关联所必需的。在本文中,我们研究了空间归一化技术对构建统计图谱的影响。我们发现,医学文献中常用的Talairach或前后连合坐标系所生成的图谱比那些依赖非线性体积图像配准的归一化方法所获得的图谱更加分散。我们还发现,使用非线性技术生成的图谱与其预期的解剖位置相关。

相似文献

1
Effect of data normalization on the creation of neuro-probabilistic atlases.数据归一化对神经概率图谱创建的影响。
Stereotact Funct Neurosurg. 2013;91(3):148-52. doi: 10.1159/000345268. Epub 2013 Feb 27.

引用本文的文献

本文引用的文献

9
Assessment of brain shift related to deep brain stimulation surgery.与深部脑刺激手术相关的脑移位评估
Stereotact Funct Neurosurg. 2008;86(1):44-53. doi: 10.1159/000108588. Epub 2007 Sep 18.
10
Brain shift during deep brain stimulation surgery for Parkinson's disease.帕金森病深部脑刺激手术中的脑移位
Stereotact Funct Neurosurg. 2008;86(1):37-43. doi: 10.1159/000108587. Epub 2007 Sep 18.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验