Suppr超能文献

一种用于分析 DCE-MRI 数据的扩散补偿模型:理论、模拟和实验结果。

A diffusion-compensated model for the analysis of DCE-MRI data: theory, simulations and experimental results.

机构信息

Department of Radiology, Northwestern University Chicago, IL 60611, USA.

出版信息

Phys Med Biol. 2013 Mar 21;58(6):1983-98. doi: 10.1088/0031-9155/58/6/1983. Epub 2013 Mar 4.

Abstract

Accurate quantification of pharmacokinetic parameters in dynamic contrast-enhanced (DCE) MRI may be affected by the passive diffusion of contrast agent (CA) within the tissue. By introducing an additional term into the standard Tofts-Kety (STK) model, we correct for the effects of CA diffusion. We first develop the theory describing a CA diffusion corrected STK model (DTK). The model is then tested in simulation with simple models of diffusion. The DTK model is also fit to 18 in vivo DCE-MRI acquisitions from murine models of cancer and results are compared to those from the STK model. The DTK model returned estimates with significantly lower error than the STK model (p ≪ 0.001). In poorly perfused (i.e., K(trans) ≤ 0.05 min(-1)) regions the STK model returned unphysical ve values, while the DTK model estimated ve with less than 7% error in noise-free simulations. Results in vivo data revealed similar trends. For voxels with low K(trans) values and late peak concentration times the STK model returned ve estimates >1.0 in 40% of the voxels as compared to only 16% for the DTK model. The DTK model presented here shows promise in estimating accurate kinetic parameters in the presence of passive contrast agent diffusion.

摘要

在动态对比增强 (DCE) MRI 中,药代动力学参数的精确量化可能会受到对比剂 (CA) 在组织内被动扩散的影响。通过在标准 Tofts-Kety (STK) 模型中引入额外项,可以校正 CA 扩散的影响。我们首先开发了描述 CA 扩散校正 STK 模型 (DTK) 的理论。然后,使用 CA 扩散的简单模型对该模型进行了模拟测试。DTK 模型也适用于来自癌症小鼠模型的 18 个体内 DCE-MRI 采集,并将结果与 STK 模型进行比较。DTK 模型返回的估计值误差明显低于 STK 模型(p ≪ 0.001)。在灌注不良的区域(即 K(trans) ≤ 0.05 min(-1)),STK 模型返回的 ve 值不具有物理意义,而 DTK 模型在无噪声模拟中估计的 ve 值误差小于 7%。体内数据的结果显示出类似的趋势。对于 K(trans) 值较低且峰值浓度时间较晚的体素,STK 模型返回的 ve 值在 40%的体素中大于 1.0,而 DTK 模型仅为 16%。本文提出的 DTK 模型有望在存在被动对比剂扩散的情况下准确估计动力学参数。

相似文献

1
A diffusion-compensated model for the analysis of DCE-MRI data: theory, simulations and experimental results.
Phys Med Biol. 2013 Mar 21;58(6):1983-98. doi: 10.1088/0031-9155/58/6/1983. Epub 2013 Mar 4.
2
Incorporating contrast agent diffusion into the analysis of DCE-MRI data.
Magn Reson Med. 2007 Dec;58(6):1124-34. doi: 10.1002/mrm.21400.
3
Extended graphical model for analysis of dynamic contrast-enhanced MRI.
Magn Reson Med. 2011 Sep;66(3):868-78. doi: 10.1002/mrm.22819. Epub 2011 Mar 9.
6
Analysis of simplicial complexes to determine when to sample for quantitative DCE MRI of the breast.
Magn Reson Med. 2023 Mar;89(3):1134-1150. doi: 10.1002/mrm.29511. Epub 2022 Nov 2.
7
The application of dynamic contrast-enhanced MRI and diffusion-weighted MRI in patients with maxillofacial tumors.
Acad Radiol. 2015 Feb;22(2):210-6. doi: 10.1016/j.acra.2014.08.016. Epub 2014 Oct 14.
10

引用本文的文献

1
Current status in spatiotemporal analysis of contrast-based perfusion MRI.
Magn Reson Med. 2024 Mar;91(3):1136-1148. doi: 10.1002/mrm.29906. Epub 2023 Nov 6.
3
The effects of intravoxel contrast agent diffusion on the analysis of DCE-MRI data in realistic tissue domains.
Magn Reson Med. 2018 Jul;80(1):330-340. doi: 10.1002/mrm.26995. Epub 2017 Nov 8.
4
Diffusion-compensated tofts model suggests contrast leakage through aneurysm wall.
Magn Reson Med. 2017 Dec;78(6):2388-2398. doi: 10.1002/mrm.26607. Epub 2017 Jan 23.
9
Techniques and applications of dynamic contrast enhanced magnetic resonance imaging in cancer.
Annu Int Conf IEEE Eng Med Biol Soc. 2014;2014:4264-7. doi: 10.1109/EMBC.2014.6944566.

本文引用的文献

1
Early prediction of pathologic response to neoadjuvant therapy in breast cancer: systematic review of the accuracy of MRI.
Breast. 2012 Oct;21(5):669-77. doi: 10.1016/j.breast.2012.07.006. Epub 2012 Aug 3.
2
In vivo measurement of gadolinium diffusivity by dynamic contrast-enhanced MRI: a preclinical study of human xenografts.
Magn Reson Med. 2013 Jan;69(1):269-76. doi: 10.1002/mrm.24246. Epub 2012 Mar 22.
3
Assessment of tumor radioresponsiveness and metastatic potential by dynamic contrast-enhanced magnetic resonance imaging.
Int J Radiat Oncol Biol Phys. 2011 Sep 1;81(1):255-61. doi: 10.1016/j.ijrobp.2011.04.008.
5
Dynamic contrast-enhanced-MRI of tumor hypoxia.
Magn Reson Med. 2012 Feb;67(2):519-30. doi: 10.1002/mrm.23014. Epub 2011 Jun 9.
6
Magnetic resonance imaging of tumor necrosis.
Acta Oncol. 2011 Apr;50(3):427-34. doi: 10.3109/0284186X.2010.526633. Epub 2010 Oct 18.
7
Dynamic Contrast Enhanced Magnetic Resonance Imaging in Oncology: Theory, Data Acquisition, Analysis, and Examples.
Curr Med Imaging Rev. 2009 May 1;3(2):91-107. doi: 10.2174/157340507780619179.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验