Suppr超能文献

原子包层波导中的纳米尺度光物质相互作用。

Nanoscale light-matter interactions in atomic cladding waveguides.

机构信息

Department of Applied Physics, The Benin School of Engineering and Computer Science, The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel.

出版信息

Nat Commun. 2013;4:1548. doi: 10.1038/ncomms2554.

Abstract

Alkali vapours, such as rubidium, are being used extensively in several important fields of research such as slow and stored light nonlinear optics quantum computation, atomic clocks and magnetometers. Recently, there is a growing effort towards miniaturizing traditional centimetre-size vapour cells. Owing to the significant reduction in device dimensions, light-matter interactions are greatly enhanced, enabling new functionalities due to the low power threshold needed for nonlinear interactions. Here, taking advantage of the mature platform of silicon photonics, we construct an efficient and flexible platform for tailored light-vapour interactions on a chip. Specifically, we demonstrate light-matter interactions in an atomic cladding waveguide, consisting of a silicon nitride nano-waveguide core with a rubidium vapour cladding. We observe the efficient interaction of the electromagnetic guided mode with the rubidium cladding and show that due to the high confinement of the optical mode, the rubidium absorption saturates at powers in the nanowatt regime.

摘要

碱蒸气,如铷,正被广泛应用于多个重要的研究领域,如慢光和存储光的非线性光学、量子计算、原子钟和磁力计。最近,人们越来越努力地将传统的厘米大小的蒸气室小型化。由于器件尺寸的显著减小,光物质相互作用大大增强,由于非线性相互作用所需的低功率阈值,从而实现新的功能。在这里,我们利用成熟的硅光子学平台,在芯片上构建了一个高效灵活的平台,用于定制光-蒸气相互作用。具体来说,我们在一个原子包层波导中演示了光-物质相互作用,该波导由具有铷蒸气包层的氮化硅纳米波导芯组成。我们观察到电磁导模与铷包层的有效相互作用,并表明由于光模的高限制,铷的吸收在纳瓦级功率下饱和。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验