Bicanski Andrej, Ryczko Dimitri, Cabelguen Jean-Marie, Ijspeert Auke Jan
Biorobotics Laboratory, School of Engineering, École Polytechnique Fédérale de Lausanne, Station 14, 1015 , Lausanne, VD, Switzerland,
Biol Cybern. 2013 Oct;107(5):565-87. doi: 10.1007/s00422-012-0538-y. Epub 2013 Mar 6.
The evolutionary transition from water to land required new locomotor modes and corresponding adjustments of the spinal "central pattern generators" for locomotion. Salamanders resemble the first terrestrial tetrapods and represent a key animal for the study of these changes. Based on recent physiological data from salamanders, and previous work on the swimming, limbless lamprey, we present a model of the basic oscillatory network in the salamander spinal cord, the spinal segment. Model neurons are of the Hodgkin-Huxley type. Spinal hemisegments contain sparsely connected excitatory and inhibitory neuron populations, and are coupled to a contralateral hemisegment. The model yields a large range of experimental findings, especially the NMDA-induced oscillations observed in isolated axial hemisegments and segments of the salamander Pleurodeles waltlii. The model reproduces most of the effects of the blockade of AMPA synapses, glycinergic synapses, calcium-activated potassium current, persistent sodium current, and [Formula: see text]-current. Driving segments with a population of brainstem neurons yields fast oscillations in the in vivo swimming frequency range. A minimal modification to the conductances involved in burst-termination yields the slower stepping frequency range. Slow oscillators can impose their frequency on fast oscillators, as is likely the case during gait transitions from swimming to stepping. Our study shows that a lamprey-like network can potentially serve as a building block of axial and limb oscillators for swimming and stepping in salamanders.
从水生到陆生的进化转变需要新的运动模式以及对用于运动的脊髓“中枢模式发生器”进行相应调整。蝾螈类似于最早的陆生四足动物,是研究这些变化的关键动物。基于蝾螈最近的生理数据以及之前对无肢七鳃鳗游泳的研究工作,我们提出了蝾螈脊髓基本振荡网络即脊髓节段的模型。模型神经元为霍奇金 - 赫胥黎类型。脊髓半节段包含稀疏连接的兴奋性和抑制性神经元群体,并与对侧半节段相耦合。该模型得出了大量实验结果,特别是在分离的蝾螈轴向半节段和肋突螈节段中观察到的NMDA诱导的振荡。该模型再现了AMPA突触、甘氨酸能突触、钙激活钾电流、持续性钠电流以及[公式:见原文]电流阻断的大部分效应。用一群脑干神经元驱动节段会在体内游泳频率范围内产生快速振荡。对参与爆发终止的电导进行最小程度的修改会产生较慢的步频范围。慢振荡器可以将其频率强加于快振荡器,就像从游泳到行走的步态转变过程中可能发生的情况一样。我们的研究表明,类似七鳃鳗的网络有可能作为蝾螈游泳和行走的轴向及肢体振荡器的构建模块。