Suppr超能文献

反复发作性重度抑郁障碍的急性期认知治疗:哪些患者脱落以及患者技能对治疗反应的影响有多大?

Acute phase cognitive therapy for recurrent major depressive disorder: who drops out and how much do patient skills influence response?

机构信息

Department of Psychiatry, The University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX, 75390-9149, United States.

出版信息

Behav Res Ther. 2013 May;51(4-5):221-30. doi: 10.1016/j.brat.2013.01.006.

Abstract

OBJECTIVE

The aims were to predict cognitive therapy (CT) noncompletion and to determine, relative to other putative predictors, the extent to which the patient skills in CT for recurrent major depressive disorder predicted response in a large, two-site trial.

METHOD

Among 523 outpatients aged 18e70, exposed to 12e14 weeks of CT, 21.6% dropped out. Of the 410 completers, 26.1% did not respond. To predict these outcomes, we conducted logistic regression analyses of demographics, pre-treatment illness characteristics and psychosocial measures, and midtreatment therapeutic alliance.

RESULTS

The 17-item Hamilton Rating Scale for Depression (HRSD17) scores at entry predicted dropout and nonresponse. Patients working for pay, of non-Hispanic white race, who were older, or had more education were significantly more likely to complete. Controlling for HRSD17, significant predictors of nonresponse included: lower scores on the Skills of Cognitive Therapy-Observer Version (SoCT-O), not working for pay, history of only two depressive episodes, greater pre-treatment social impairment. Midphase symptom reduction was a strong predictor of final outcome.

CONCLUSIONS

These prognostic indicators forecast which patients tend to be optimal candidates for standard CT, as well as which patients may benefit from changes in therapy, its focus, or from alternate modalities of treatment. Pending replication, the findings underscore the importance of promoting patients’ understanding and use of CT skills, as well as reducing depressive symptoms early. Future research may determine the extent to which these findings generalize to other therapies, providers who vary in competency, and patients with other depressive subtypes or disorders.

摘要

目的

旨在预测认知疗法(CT)的完成情况,并确定相对于其他推测的预测因素,复发性重度抑郁症患者在 CT 中的技能相对于其他推测的预测因素在大型双站点试验中的反应程度。

方法

在 523 名年龄在 18 至 70 岁之间、接受 12 至 14 周 CT 治疗的门诊患者中,有 21.6%的患者退出。在 410 名完成者中,有 26.1%的患者没有反应。为了预测这些结果,我们对人口统计学、治疗前疾病特征和心理社会测量以及中期治疗联盟进行了逻辑回归分析。

结果

入组时的 17 项汉密尔顿抑郁量表(HRSD17)评分预测了脱落和无反应。有薪工作、非西班牙裔白人种族、年龄较大或受教育程度较高的患者更有可能完成治疗。控制 HRSD17 后,非反应的显著预测因素包括:认知治疗技能观察量表(SoCT-O)评分较低、无薪工作、仅两次抑郁发作史、治疗前社会功能障碍较大。中期症状减轻是最终结局的有力预测指标。

结论

这些预后指标预测了哪些患者倾向于成为标准 CT 的最佳候选者,以及哪些患者可能从治疗、治疗重点或替代治疗方式的改变中受益。在等待复制的结果时,这些发现强调了促进患者对 CT 技能的理解和使用的重要性,以及尽早减轻抑郁症状。未来的研究可能会确定这些发现在多大程度上适用于其他疗法、在能力上各不相同的提供者以及其他抑郁亚型或障碍的患者。

相似文献

3
Deterioration in psychosocial functioning predicts relapse/recurrence after cognitive therapy for depression.
J Affect Disord. 2009 Jan;112(1-3):135-43. doi: 10.1016/j.jad.2008.04.004. Epub 2008 Jun 9.
4
Estimating outcome probabilities from early symptom changes in cognitive therapy for recurrent depression.
J Consult Clin Psychol. 2019 Jun;87(6):510-520. doi: 10.1037/ccp0000409. Epub 2019 Apr 22.
6
8
Skills of Cognitive Therapy (SoCT): a new measure of patients' comprehension and use.
Psychol Assess. 2011 Sep;23(3):578-86. doi: 10.1037/a0022485.
9
Change in psychosocial functioning and depressive symptoms during acute-phase cognitive therapy for depression.
Psychol Med. 2012 Feb;42(2):317-26. doi: 10.1017/S0033291711001279. Epub 2011 Jul 25.
10
The process of change in cognitive therapy for depression: predictors of early inter-session symptom gains.
Behav Res Ther. 2010 Jul;48(7):599-606. doi: 10.1016/j.brat.2010.03.011. Epub 2010 Mar 17.

引用本文的文献

1
Pain sensitivity as a state marker and predictor for adolescent non-suicidal self-injury.
Psychol Med. 2024 Jul;54(9):2291-2298. doi: 10.1017/S0033291724000461. Epub 2024 Mar 11.
2
Client predictors of therapy dropout in a primary care setting: a prospective cohort study.
BMC Psychiatry. 2023 May 24;23(1):358. doi: 10.1186/s12888-023-04878-7.
3
Development and preliminary validation of the treatment adherence rating scale.
J Behav Ther Exp Psychiatry. 2023 Jun;79:101832. doi: 10.1016/j.jbtep.2022.101832. Epub 2022 Dec 24.
5
Predictors of Dropout in Internet-Based Cognitive Behavioral Therapy for Depression.
Cognit Ther Res. 2019 Jun;43(3):620-630. doi: 10.1007/s10608-018-9979-5. Epub 2018 Nov 16.
6
The Role of Dyadic Discord in Outcomes in Acute Phase Cognitive Therapy for Adults With Recurrent Major Depressive Disorder.
Behav Ther. 2019 Jul;50(4):778-790. doi: 10.1016/j.beth.2018.11.006. Epub 2018 Dec 6.
7
Estimating outcome probabilities from early symptom changes in cognitive therapy for recurrent depression.
J Consult Clin Psychol. 2019 Jun;87(6):510-520. doi: 10.1037/ccp0000409. Epub 2019 Apr 22.
10
A machine learning ensemble to predict treatment outcomes following an Internet intervention for depression.
Psychol Med. 2019 Oct;49(14):2330-2341. doi: 10.1017/S003329171800315X. Epub 2018 Nov 5.

本文引用的文献

1
2
Remission prognosis for cognitive therapy for recurrent depression using the pupil: utility and neural correlates.
Biol Psychiatry. 2011 Apr 15;69(8):726-33. doi: 10.1016/j.biopsych.2010.12.041.
3
Skills of Cognitive Therapy (SoCT): a new measure of patients' comprehension and use.
Psychol Assess. 2011 Sep;23(3):578-86. doi: 10.1037/a0022485.
5
Cognitive behavioral therapy for mood disorders: efficacy, moderators and mediators.
Psychiatr Clin North Am. 2010 Sep;33(3):537-55. doi: 10.1016/j.psc.2010.04.005.
7
The process of change in cognitive therapy for depression: predictors of early inter-session symptom gains.
Behav Res Ther. 2010 Jul;48(7):599-606. doi: 10.1016/j.brat.2010.03.011. Epub 2010 Mar 17.
9
Socioeconomic status in the treatment of depression.
Am J Orthopsychiatry. 2009 Apr;79(2):148-58. doi: 10.1037/a0015469.
10
Cognitive therapy for depressed adults with comorbid social phobia.
J Affect Disord. 2009 Apr;114(1-3):271-8. doi: 10.1016/j.jad.2008.08.008. Epub 2008 Sep 18.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验