Department of Psychology, Institute for Mental Health Research, University of Texas at Austin, Austin, TX, USA.
Gaia AG, Hamburg, Germany.
Psychol Med. 2019 Oct;49(14):2330-2341. doi: 10.1017/S003329171800315X. Epub 2018 Nov 5.
Some Internet interventions are regarded as effective treatments for adult depression, but less is known about who responds to this form of treatment.
An elastic net and random forest were trained to predict depression symptoms and related disability after an 8-week course of an Internet intervention, Deprexis, involving adults (N = 283) from across the USA. Candidate predictors included psychopathology, demographics, treatment expectancies, treatment usage, and environmental context obtained from population databases. Model performance was evaluated using predictive R2$\lpar R_{{\rm pred}}^2\rpar\comma $ the expected variance explained in a new sample, estimated by 10 repetitions of 10-fold cross-validation.
An ensemble model was created by averaging the predictions of the elastic net and random forest. Model performance was compared with a benchmark linear autoregressive model that predicted each outcome using only its baseline. The ensemble predicted more variance in post-treatment depression (8.0% gain, 95% CI 0.8-15; total $R_{{\rm pred}}^2 ; $= 0.25), disability (5.0% gain, 95% CI -0.3 to 10; total $R_{{\rm pred}}^2 ; $= 0.25), and well-being (11.6% gain, 95% CI 4.9-19; total $R_{{\rm pred}}^2 ; $= 0.29) than the benchmark model. Important predictors included comorbid psychopathology, particularly total psychopathology and dysthymia, low symptom-related disability, treatment credibility, lower access to therapists, and time spent using certain Deprexis modules.
A number of variables predict symptom improvement following an Internet intervention, but each of these variables makes relatively small contributions. Machine learning ensembles may be a promising statistical approach for identifying the cumulative contribution of many weak predictors to psychosocial depression treatment response.
一些互联网干预措施被认为是成人抑郁症的有效治疗方法,但对于哪些人对这种治疗形式有反应知之甚少。
使用弹性网络和随机森林来预测接受为期 8 周的互联网干预(Deprexis)后成年人(来自美国各地的 283 名参与者)的抑郁症状和相关残疾。候选预测因子包括从人口数据库中获得的精神病理学、人口统计学、治疗预期、治疗使用情况和环境背景。通过 10 次 10 折交叉验证的重复,使用可预测的 R2$\lpar R_{{\rm pred}}^2\rpar\comma $(新样本中可解释的预期方差)评估模型性能。
通过平均弹性网络和随机森林的预测结果创建了一个集成模型。通过比较使用仅基线预测每个结果的基准线性自回归模型,比较了模型性能。该集成模型在治疗后抑郁(8.0%的增益,95%CI 0.8-15;总$R_{{\rm pred}}^2$= 0.25)、残疾(5.0%的增益,95%CI -0.3 到 10;总$R_{{\rm pred}}^2$= 0.25)和幸福感(11.6%的增益,95%CI 4.9-19;总$R_{{\rm pred}}^2$= 0.29)方面的预测表现优于基准模型。重要的预测因子包括共病精神病理学,特别是总精神病理学和心境恶劣、低症状相关残疾、治疗可信度、较低的治疗师获取机会和使用特定 Deprexis 模块的时间。
许多变量可以预测互联网干预后症状的改善,但每个变量的贡献相对较小。机器学习集成可能是一种很有前途的统计方法,可以识别许多弱预测因子对心理社会抑郁治疗反应的累积贡献。