Suppr超能文献

基于电子病历入院标准建立预测模型,以识别住院癌症患者 30 天死亡率风险。

A predictive model to identify hospitalized cancer patients at risk for 30-day mortality based on admission criteria via the electronic medical record.

机构信息

Department of Medicine, Division of General Medical Disciplines and Division of Oncology, Stanford University, Stanford, CA 94305, USA.

出版信息

Cancer. 2013 Jun 1;119(11):2074-80. doi: 10.1002/cncr.27974. Epub 2013 Mar 15.

Abstract

BACKGROUND

This study sought to develop a predictive model for 30-day mortality in hospitalized cancer patients, by using admission information available through the electronic medical record.

METHODS

Observational cohort study of 3062 patients admitted to the oncology service from August 1, 2008, to July 31, 2009. Matched numbers of patients were in the derivation and validation cohorts (1531 patients). Data were obtained on day 1 of admission and included demographic information, vital signs, and laboratory data. Survival data were obtained from the Social Security Death Index.

RESULTS

The 30-day mortality rate of the derivation and validation samples were 9.5% and 9.7% respectively. Significant predictive variables in the multivariate analysis included age (P < .0001), assistance with activities of daily living (ADLs; P = .022), admission type (elective/emergency) (P = .059), oxygen use (P < .0001), and vital signs abnormalities including pulse oximetry (P = .0004), temperature (P = .017), and heart rate (P = .0002). A logistic regression model was developed to predict death within 30 days: Score = 18.2897 + 0.6013*(admit type) + 0.4518*(ADL) + 0.0325*(admit age) - 0.1458*(temperature) + 0.019*(heart rate) - 0.0983*(pulse oximetry) - 0.0123 (systolic blood pressure) + 0.8615*(O2 use). The largest sum of sensitivity (63%) and specificity (78%) was at -2.09 (area under the curve = -0.789). A total of 25.32% (100 of 395) of patients with a score above -2.09 died, whereas 4.31% (49 of 1136) of patients below -2.09 died. Sensitivity and positive predictive value in the derivation and validation samples compared favorably.

CONCLUSIONS

Clinical factors available via the electronic medical record within 24 hours of hospital admission can be used to identify cancer patients at risk for 30-day mortality. These patients would benefit from discussion of preferences for care at the end of life.

摘要

背景

本研究旨在通过电子病历中可获得的入院信息,建立预测模型,以预测住院癌症患者 30 天死亡率。

方法

这是一项观察性队列研究,纳入了 2008 年 8 月 1 日至 2009 年 7 月 31 日期间入住肿瘤科的 3062 名患者。在推导队列和验证队列中匹配了相同数量的患者(1531 名患者)。数据于入院第 1 天获得,包括人口统计学信息、生命体征和实验室数据。通过社会保障死亡指数获得生存数据。

结果

推导队列和验证队列的 30 天死亡率分别为 9.5%和 9.7%。多变量分析中的显著预测变量包括年龄(P<.0001)、日常生活活动(ADL)协助(P=.022)、入院类型(择期/急诊)(P=.059)、吸氧(P<.0001)和生命体征异常,包括脉搏血氧饱和度(P=.0004)、体温(P=.017)和心率(P=.0002)。建立了一个 logistic 回归模型来预测 30 天内的死亡:分数=18.2897+0.6013*(入院类型)+0.4518*(ADL)+0.0325*(入院年龄)-0.1458*(体温)+0.019*(心率)-0.0983*(脉搏血氧饱和度)-0.0123(收缩压)+0.8615*(O2 使用)。在-2.09 时,灵敏度(63%)和特异性(78%)之和最大(曲线下面积=-0.789)。评分高于-2.09 的患者中,共有 25.32%(100/395)死亡,而评分低于-2.09 的患者中,仅有 4.31%(49/1136)死亡。推导和验证队列的灵敏度和阳性预测值均表现良好。

结论

入院 24 小时内通过电子病历获得的临床因素可用于识别 30 天内死亡风险较高的癌症患者。这些患者将受益于临终关怀偏好的讨论。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验