Suppr超能文献

计算机辅助肝脏局灶性病变检测。

Computer-aided focal liver lesion detection.

机构信息

Singapore Bioimaging Consortium, Agency for Science, Technology and Research, 30 Biopolis Street, #07-01, Matrix, 138671 , Singapore, Singapore.

出版信息

Int J Comput Assist Radiol Surg. 2013 Jul;8(4):511-25. doi: 10.1007/s11548-013-0832-8. Epub 2013 Mar 31.

Abstract

PURPOSE

Our aim is to develop an automatic method which can detect diverse focal liver lesions (FLLs) in 3D CT volumes.

METHOD

A hybrid generative-discriminative framework is proposed. It first uses a generative model to describe non-lesion components and then identifies all candidate FLLs within a 3D liver volume by eliminating non-lesion components. It subsequently uses a discriminative approach to suppress false positives with the advantage of tumoroid, a novel measurement combining three shape features spherical symmetry, compactness and size.

RESULTS

This method was tested on 71 abdominal CT datasets (5,854 slices from 61 patients, with 261 FLLs covering six pathological types) and evaluated using the free-response receiver operating characteristic (FROC) curves. Overall, it achieved a true positive rate of 90 % with one false positive per liver. It degenerated gently with the decrease in lesion sizes to 30 ml. It achieved a true-positive rate of 36 % when tested on the lesions less than 4 ml. The average computing time of the lesion detection is 4 min and 28 s per CT volume on a PC with 2.67 GHz CPU and 4.0 GB RAM.

CONCLUSIONS

The proposed method is comparable to the radiologists' visual investigation in terms of efficiency. The tool has great potential to reduce radiologists' burden in going through thousands of images routinely.

摘要

目的

我们旨在开发一种能够在 3D CT 容积中检测各种局灶性肝脏病变(FLL)的自动方法。

方法

提出了一种混合生成式-判别式框架。它首先使用生成式模型来描述非病变成分,然后通过消除非病变成分来识别 3D 肝脏容积内的所有候选 FLL。随后,它使用判别式方法来抑制假阳性,其优势在于肿瘤样体(tumoroid),这是一种结合了三个形状特征的新型测量方法,即球形对称、紧凑性和大小。

结果

该方法在 71 个腹部 CT 数据集(61 名患者的 5854 个切片,包含 261 个涵盖六种病理类型的 FLL)上进行了测试,并使用自由响应接收者操作特征(FROC)曲线进行了评估。总体而言,它在每个肝脏有一个假阳性的情况下,实现了 90%的真阳性率。随着病变大小降至 30ml,它逐渐退化。当在小于 4ml 的病变上进行测试时,它的真阳性率为 36%。在具有 2.67GHz CPU 和 4.0GB RAM 的 PC 上,每个 CT 容积的病变检测平均计算时间为 4 分 28 秒。

结论

该方法在效率方面与放射科医生的视觉检查相当。该工具具有很大的潜力,可以减轻放射科医生在日常工作中处理数千张图像的负担。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验