Suppr超能文献

基于深度学习的病变检测算法在CT中检测结直肠癌肝转移的诊断性能

Diagnostic Performance of Deep Learning-Based Lesion Detection Algorithm in CT for Detecting Hepatic Metastasis from Colorectal Cancer.

作者信息

Kim Kiwook, Kim Sungwon, Han Kyunghwa, Bae Heejin, Shin Jaeseung, Lim Joon Seok

机构信息

Department of Radiology, Research Institute of Radiological Science and Center for Clinical Image Data Science, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea.

出版信息

Korean J Radiol. 2021 Jun;22(6):912-921. doi: 10.3348/kjr.2020.0447. Epub 2021 Feb 25.

Abstract

OBJECTIVE

To compare the performance of the deep learning-based lesion detection algorithm (DLLD) in detecting liver metastasis with that of radiologists.

MATERIALS AND METHODS

This clinical retrospective study used 4386-slice computed tomography (CT) images and labels from a training cohort (502 patients with colorectal cancer [CRC] from November 2005 to December 2010) to train the DLLD for detecting liver metastasis, and used CT images of a validation cohort (40 patients with 99 liver metastatic lesions and 45 patients without liver metastasis from January 2011 to December 2011) for comparing the performance of the DLLD with that of readers (three abdominal radiologists and three radiology residents). For per-lesion binary classification, the sensitivity and false positives per patient were measured.

RESULTS

A total of 85 patients with CRC were included in the validation cohort. In the comparison based on per-lesion binary classification, the sensitivity of DLLD (81.82%, [81/99]) was comparable to that of abdominal radiologists (80.81%, = 0.80) and radiology residents (79.46%, = 0.57). However, the false positives per patient with DLLD (1.330) was higher than that of abdominal radiologists (0.357, < 0.001) and radiology residents (0.667, < 0.001).

CONCLUSION

DLLD showed a sensitivity comparable to that of radiologists when detecting liver metastasis in patients initially diagnosed with CRC. However, the false positives of DLLD were higher than those of radiologists. Therefore, DLLD could serve as an assistant tool for detecting liver metastasis instead of a standalone diagnostic tool.

摘要

目的

比较基于深度学习的病变检测算法(DLLD)与放射科医生在检测肝转移方面的性能。

材料与方法

本临床回顾性研究使用了来自一个训练队列(2005年11月至2010年12月的502例结直肠癌患者[CRC])的4386层计算机断层扫描(CT)图像和标签来训练DLLD以检测肝转移,并使用一个验证队列(2011年1月至2011年12月的40例有99个肝转移病灶的患者和45例无肝转移的患者)的CT图像来比较DLLD与阅片者(三名腹部放射科医生和三名放射科住院医师)的性能。对于每个病灶的二元分类,测量了每位患者的敏感性和假阳性。

结果

验证队列共纳入85例CRC患者。在基于每个病灶二元分类的比较中,DLLD的敏感性(81.82%,[81/99])与腹部放射科医生(80.81%,=0.80)和放射科住院医师(79.46%,=0.57)相当。然而,DLLD每位患者的假阳性(1.330)高于腹部放射科医生(0.357,<0.001)和放射科住院医师(0.667,<0.001)。

结论

在初步诊断为CRC的患者中检测肝转移时,DLLD显示出与放射科医生相当的敏感性。然而,DLLD的假阳性高于放射科医生。因此,DLLD可作为检测肝转移的辅助工具而非独立的诊断工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bfee/8154788/7cefa50bdb3a/kjr-22-912-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验