Suppr超能文献

通过组织微阵列技术进行系统抗体生成和验证,从而鉴定乳腺癌中的新型蛋白质预后标志物。

Systematic antibody generation and validation via tissue microarray technology leading to identification of a novel protein prognostic panel in breast cancer.

机构信息

UCD School of Biomolecular and Biomedical Science, UCD Conway Institute of Biomolecular and Biomedical Science, University College Dublin, Dublin 4, Ireland.

出版信息

BMC Cancer. 2013 Apr 2;13:175. doi: 10.1186/1471-2407-13-175.

Abstract

BACKGROUND

Although omic-based discovery approaches can provide powerful tools for biomarker identification, several reservations have been raised regarding the clinical applicability of gene expression studies, such as their prohibitive cost. However, the limited availability of antibodies is a key barrier to the development of a lower cost alternative, namely a discrete collection of immunohistochemistry (IHC)-based biomarkers. The aim of this study was to use a systematic approach to generate and screen affinity-purified, mono-specific antibodies targeting progression-related biomarkers, with a view towards developing a clinically applicable IHC-based prognostic biomarker panel for breast cancer.

METHODS

We examined both in-house and publicly available breast cancer DNA microarray datasets relating to invasion and metastasis, thus identifying a cohort of candidate progression-associated biomarkers. Of these, 18 antibodies were released for extended analysis. Validated antibodies were screened against a tissue microarray (TMA) constructed from a cohort of consecutive breast cancer cases (n = 512) to test the immunohistochemical surrogate signature.

RESULTS

Antibody screening revealed 3 candidate prognostic markers: the cell cycle regulator, Anillin (ANLN); the mitogen-activated protein kinase, PDZ-Binding Kinase (PBK); and the estrogen response gene, PDZ-Domain Containing 1 (PDZK1). Increased expression of ANLN and PBK was associated with poor prognosis, whilst increased expression of PDZK1 was associated with good prognosis. A 3-marker signature comprised of high PBK, high ANLN and low PDZK1 expression was associated with decreased recurrence-free survival (p < 0.001) and breast cancer-specific survival (BCSS) (p < 0.001). This novel signature was associated with high tumour grade (p < 0.001), positive nodal status (p = 0.029), ER-negativity (p = 0.006), Her2-positivity (p = 0.036) and high Ki67 status (p < 0.001). However, multivariate Cox regression demonstrated that the signature was not a significant predictor of BCSS (HR = 6.38; 95% CI = 0.79-51.26, p = 0.082).

CONCLUSIONS

We have developed a comprehensive biomarker pathway that extends from discovery through to validation on a TMA platform. This proof-of-concept study has resulted in the identification of a novel 3-protein prognostic panel. Additional biochemical markers, interrogated using this high-throughput platform, may further augment the prognostic accuracy of this panel to a point that may allow implementation into routine clinical practice.

摘要

背景

尽管基于组学的发现方法可为生物标志物的鉴定提供强大的工具,但人们对基因表达研究的临床适用性提出了一些保留意见,例如其昂贵的成本。然而,抗体的可用性有限是开发成本更低的替代方法(即离散的免疫组织化学(IHC)为基础的生物标志物集合)的关键障碍。本研究的目的是使用系统方法生成和筛选针对进展相关生物标志物的亲和纯化的单特异性抗体,以期开发用于乳腺癌的临床适用的 IHC 为基础的预后生物标志物组合。

方法

我们研究了与侵袭和转移相关的内部和公开的乳腺癌 DNA 微阵列数据集,从而确定了一组候选进展相关生物标志物。其中 18 种抗体被释放进行进一步分析。针对来自连续乳腺癌病例的组织微阵列(TMA)(n=512)筛选验证后的抗体,以测试免疫组化替代特征。

结果

抗体筛选显示出 3 个候选预后标志物:细胞周期调节剂 Anillin(ANLN);有丝分裂原激活蛋白激酶 PDZ 结合激酶(PBK);和雌激素反应基因 PDZ 结构域包含蛋白 1(PDZK1)。高表达 ANLN 和 PBK 与预后不良相关,而 PDZK1 表达增加与预后良好相关。由高 PBK、高 ANLN 和低 PDZK1 表达组成的 3 标志物特征与无复发生存率(p<0.001)和乳腺癌特异性生存率(BCSS)(p<0.001)降低相关。这个新的特征与高肿瘤分级(p<0.001)、阳性淋巴结状态(p=0.029)、ER 阴性(p=0.006)、Her2 阳性(p=0.036)和高 Ki67 状态(p<0.001)相关。然而,多变量 Cox 回归表明,该标志物不是 BCSS 的显著预测因子(HR=6.38;95%CI=0.79-51.26,p=0.082)。

结论

我们已经开发了一个从发现到 TMA 平台验证的全面生物标志物途径。这项概念验证研究导致了一种新的 3 种蛋白质预后组合的鉴定。使用这种高通量平台检测的其他生化标志物可能会进一步提高该组合的预后准确性,以至于可能允许将其纳入常规临床实践。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a6a3/3668187/688065c17041/1471-2407-13-175-1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验