Department of Occupational Hygiene, INAIL ex ISPESL, Via Fontana Candida, 1, 00040 Monte Porzio Catone (Roma), Italy.
J Acoust Soc Am. 2013 Apr;133(4):2240-53. doi: 10.1121/1.4794382.
The input/output functions of the different-latency components of human transient-evoked and stimulus-frequency otoacoustic emissions are analyzed, with the goal of relating them to the underlying nonlinear dynamical properties of the basilar membrane response. Several cochlear models predict a cubic nonlinearity that would yield a correspondent compressive response. The otoacoustic response comes from different generation mechanisms, each characterized by a particular relation between local basilar membrane displacement and otoacoustic level. For the same mechanism (e.g., reflection from cochlear roughness), different generation places would imply differently compressive regimes of the local basilar membrane dynamics. Therefore, this kind of study requires disentangling these contributions, using suitable data acquisition and time-frequency analysis techniques. Fortunately, different generation mechanisms/places also imply different phase-gradient delays, knowledge of which can be used to perform this task. In this study, the different-latency otoacoustic components systematically show differently compressive response, consistent with two simple hypotheses: (1) all emissions come from the reflection mechanism and (2) the basilar membrane response is strongly compressive in the resonance region and closer to linear in more basal regions. It is not clear if such a compressive behavior also extends to arbitrarily low stimulus levels.
分析了人耳瞬态诱发和刺激频率耳声发射的不同潜伏期成分的输入/输出功能,目的是将其与基底膜响应的潜在非线性动力学特性联系起来。几个耳蜗模型预测了一种三次非线性,这将产生相应的压缩响应。耳声发射来自不同的产生机制,每个机制都具有局部基底膜位移和耳声发射水平之间的特定关系。对于相同的机制(例如,来自耳蜗粗糙度的反射),不同的产生位置将意味着局部基底膜动力学的不同压缩状态。因此,这种研究需要使用合适的数据采集和时频分析技术来分离这些贡献。幸运的是,不同的产生机制/位置也意味着不同的相位梯度延迟,这些知识可以用来完成这项任务。在这项研究中,不同潜伏期的耳声发射成分表现出不同的压缩响应,这与两个简单的假设一致:(1)所有的发射都来自反射机制,(2)在共振区基底膜响应是强压缩的,而在更基底的区域更接近线性。目前还不清楚这种压缩行为是否也扩展到任意低的刺激水平。