Suppr超能文献

微流控共培养模型中激素反应性乳腺癌细胞作为微环境活性的传感器。

Hormonally responsive breast cancer cells in a microfluidic co-culture model as a sensor of microenvironmental activity.

机构信息

University of Wisconsin-Madison Carbone Comprehensive Cancer Center, Madison, WI 53705, USA.

出版信息

Integr Biol (Camb). 2013 May;5(5):807-16. doi: 10.1039/c3ib20265h.

Abstract

Breast cancer cell growth and therapeutic response are manipulated extrinsically by microenvironment signals. Despite recognition of the importance of the microenvironment in a variety of tumor processes, predictive measures that incorporate the activity of the surrounding cellular environment are lacking. In contrast, tumor cell biomarkers are well established in the clinic. Expression of Estrogen Receptor-alpha (ERα) is the primary defining feature of hormonally responsive tumors and is the molecular target of therapy in the most commonly diagnosed molecular subtype of breast cancer. While a number of soluble factors have been implicated in ERα activation, the complexity of signaling between the cellular microenvironment and the cancer cell implies multivariate control. The cumulative impact of the microenvironment signaling, which we define as microenvironmental activity, is more difficult to predict than the sum of its parts. Here we tested the impact of an array of microenvironments on ERα signaling utilizing a microfluidic co-culture model. Quantitative immunofluorescence was employed to assess changes in ERα protein levels, combined with gene expression and phosphorylation status, as measures of activation. Analysis of microenvironment-induced growth under the same conditions revealed a previously undescribed correlation between growth and ERα protein down-regulation. These data suggest an expanded utility for the tumor biomarker ERα, in which the combination of dynamic regulation of ERα protein and growth in a breast cancer biosensor cell become a read-out of the microenvironmental activity.

摘要

乳腺癌细胞的生长和治疗反应受到微环境信号的外在调控。尽管人们已经认识到微环境在各种肿瘤过程中的重要性,但缺乏能够综合周围细胞环境活性的预测方法。相比之下,肿瘤细胞生物标志物在临床上已经得到广泛应用。雌激素受体-α(ERα)的表达是激素反应性肿瘤的主要特征,也是最常见诊断的乳腺癌分子亚型中治疗的分子靶点。虽然有许多可溶性因子被认为与 ERα 的激活有关,但细胞微环境与癌细胞之间的信号传递的复杂性暗示了多变量的控制。我们将微环境信号的累积影响定义为微环境活性,它比其各个部分的总和更难预测。在这里,我们利用微流控共培养模型测试了一系列微环境对 ERα 信号的影响。采用定量免疫荧光法评估 ERα 蛋白水平的变化,并结合基因表达和磷酸化状态作为激活的衡量标准。在相同条件下对微环境诱导的生长进行分析,揭示了生长与 ERα 蛋白下调之间以前未描述的相关性。这些数据表明,肿瘤生物标志物 ERα 的应用范围有所扩大,其中 ERα 蛋白的动态调节与乳腺癌生物传感器细胞中的生长结合成为微环境活性的读出。

相似文献

3
Structural and Molecular Mechanisms of Cytokine-Mediated Endocrine Resistance in Human Breast Cancer Cells.
Mol Cell. 2017 Mar 16;65(6):1122-1135.e5. doi: 10.1016/j.molcel.2017.02.008.
4
LATS2 is a modulator of estrogen receptor alpha.
Anticancer Res. 2013 Jan;33(1):53-63.
5
A hypersensitive estrogen receptor alpha mutation that alters dynamic protein interactions.
Breast Cancer Res Treat. 2010 Jul;122(2):381-93. doi: 10.1007/s10549-009-0580-1. Epub 2009 Oct 20.
6
TFAP2C controls hormone response in breast cancer cells through multiple pathways of estrogen signaling.
Cancer Res. 2007 Sep 15;67(18):8439-43. doi: 10.1158/0008-5472.CAN-07-2293.
8
A novel culture method that sustains ERα signaling in human breast cancer tissue microstructures.
J Exp Clin Cancer Res. 2020 Aug 17;39(1):161. doi: 10.1186/s13046-020-01653-4.

引用本文的文献

1
Customizable Microfluidic Devices: Progress, Constraints, and Future Advances.
Curr Drug Deliv. 2024;21(10):1285-1299. doi: 10.2174/0115672018264064231017113813.
2
Patient-Specific Organoid and Organ-on-a-Chip: 3D Cell-Culture Meets 3D Printing and Numerical Simulation.
Adv Biol (Weinh). 2021 Jun;5(6):e2000024. doi: 10.1002/adbi.202000024. Epub 2021 Apr 15.
3
Breast tumor-on-chip models: From disease modeling to personalized drug screening.
J Control Release. 2021 Mar 10;331:103-120. doi: 10.1016/j.jconrel.2020.12.057. Epub 2021 Jan 6.
4
Intrinsic and Extrinsic Factors Governing the Transcriptional Regulation of ESR1.
Horm Cancer. 2020 Aug;11(3-4):129-147. doi: 10.1007/s12672-020-00388-0. Epub 2020 Jun 26.
6
Hypoxia differentially regulates estrogen receptor alpha in 2D and 3D culture formats.
Arch Biochem Biophys. 2019 Aug 15;671:8-17. doi: 10.1016/j.abb.2019.05.025. Epub 2019 Jun 1.
9
Design considerations for open-well microfluidic platforms for hypoxic cell studies.
Biomicrofluidics. 2017 Oct 27;11(5):054116. doi: 10.1063/1.4998579. eCollection 2017 Sep.
10
Downregulation of estrogen receptor and modulation of growth of breast cancer cell lines mediated by paracrine stromal cell signals.
Breast Cancer Res Treat. 2017 Jan;161(2):229-243. doi: 10.1007/s10549-016-4052-0. Epub 2016 Nov 16.

本文引用的文献

1
Microscale functional cytomics for studying hematologic cancers.
Blood. 2012 Mar 8;119(10):e76-85. doi: 10.1182/blood-2011-10-384347. Epub 2012 Jan 18.
3
A kinome-wide screen identifies the insulin/IGF-I receptor pathway as a mechanism of escape from hormone dependence in breast cancer.
Cancer Res. 2011 Nov 1;71(21):6773-84. doi: 10.1158/0008-5472.CAN-11-1295. Epub 2011 Sep 9.
6
Hallmarks of cancer: the next generation.
Cell. 2011 Mar 4;144(5):646-74. doi: 10.1016/j.cell.2011.02.013.
7
Cell culture models in microfluidic systems.
Annu Rev Anal Chem (Palo Alto Calif). 2008;1:423-49. doi: 10.1146/annurev.anchem.1.031207.113042.
8
3D microchannel co-culture: method and biological validation.
Integr Biol (Camb). 2010 Aug;2(7-8):371-8. doi: 10.1039/c0ib00001a. Epub 2010 Jun 24.
9
Fundamentals of microfluidic cell culture in controlled microenvironments.
Chem Soc Rev. 2010 Mar;39(3):1036-48. doi: 10.1039/b909900j. Epub 2010 Feb 1.
10
Cellular observations enabled by microculture: paracrine signaling and population demographics.
Integr Biol (Camb). 2009 Mar;1(3):267-74. doi: 10.1039/b823059e.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验