Suppr超能文献

微流控细胞培养的基础:在可控微环境中。

Fundamentals of microfluidic cell culture in controlled microenvironments.

机构信息

Department of Biomedical Engineering, Wisconsin Institutes for Medical Research, University of Wisconsin-Madison, 1111 Highland Avenue, Madison, WI 53705, USA.

出版信息

Chem Soc Rev. 2010 Mar;39(3):1036-48. doi: 10.1039/b909900j. Epub 2010 Feb 1.

Abstract

Microfluidics has the potential to revolutionize the way we approach cell biology research. The dimensions of microfluidic channels are well suited to the physical scale of biological cells, and the many advantages of microfluidics make it an attractive platform for new techniques in biology. One of the key benefits of microfluidics for basic biology is the ability to control parameters of the cell microenvironment at relevant length and time scales. Considerable progress has been made in the design and use of novel microfluidic devices for culturing cells and for subsequent treatment and analysis. With the recent pace of scientific discovery, it is becoming increasingly important to evaluate existing tools and techniques, and to synthesize fundamental concepts that would further improve the efficiency of biological research at the microscale. This tutorial review integrates fundamental principles from cell biology and local microenvironments with cell culture techniques and concepts in microfluidics. Culturing cells in microscale environments requires knowledge of multiple disciplines including physics, biochemistry, and engineering. We discuss basic concepts related to the physical and biochemical microenvironments of the cell, physicochemical properties of that microenvironment, cell culture techniques, and practical knowledge of microfluidic device design and operation. We also discuss the most recent advances in microfluidic cell culture and their implications on the future of the field. The goal is to guide new and interested researchers to the important areas and challenges facing the scientific community as we strive toward full integration of microfluidics with biology.

摘要

微流控技术有可能彻底改变我们进行细胞生物学研究的方式。微流控通道的尺寸非常适合生物细胞的物理尺度,而且微流控技术具有许多优势,使其成为生物学新技术的有吸引力的平台。微流控技术对基础生物学的一个关键好处是能够在相关的长度和时间尺度上控制细胞微环境的参数。在设计和使用用于培养细胞以及随后的处理和分析的新型微流控设备方面已经取得了相当大的进展。随着科学发现的步伐不断加快,评估现有工具和技术并综合基本概念以进一步提高微尺度生物学研究的效率变得越来越重要。本教程综述将细胞生物学和局部微环境的基本原理与微流控中的细胞培养技术和概念相结合。在微尺度环境中培养细胞需要包括物理、生物化学和工程学在内的多个学科的知识。我们讨论了与细胞的物理和生化微环境相关的基本概念、该微环境的物理化学性质、细胞培养技术以及微流控器件设计和操作的实用知识。我们还讨论了微流控细胞培养的最新进展及其对该领域未来的影响。我们的目标是指导新的和有兴趣的研究人员了解科学界面临的重要领域和挑战,因为我们努力将微流控技术与生物学完全融合。

相似文献

1
Fundamentals of microfluidic cell culture in controlled microenvironments.
Chem Soc Rev. 2010 Mar;39(3):1036-48. doi: 10.1039/b909900j. Epub 2010 Feb 1.
2
Viable cell culture in PDMS-based microfluidic devices.
Methods Cell Biol. 2018;148:3-33. doi: 10.1016/bs.mcb.2018.09.007. Epub 2018 Nov 14.
3
Advances in microfluidic cell culture systems for studying angiogenesis.
J Lab Autom. 2013 Dec;18(6):427-36. doi: 10.1177/2211068213495206. Epub 2013 Jul 5.
4
Microfluidics-based in vivo mimetic systems for the study of cellular biology.
Acc Chem Res. 2014 Apr 15;47(4):1165-73. doi: 10.1021/ar4002608. Epub 2014 Feb 20.
5
A review on microfluidics manipulation of the extracellular chemical microenvironment and its emerging application to cell analysis.
Anal Chim Acta. 2020 Aug 15;1125:94-113. doi: 10.1016/j.aca.2020.05.065. Epub 2020 Jun 1.
6
High-throughput screening approaches and combinatorial development of biomaterials using microfluidics.
Acta Biomater. 2016 Apr 1;34:1-20. doi: 10.1016/j.actbio.2015.09.009. Epub 2015 Sep 8.
7
Microfluidics for Protein Biophysics.
J Mol Biol. 2018 Mar 2;430(5):565-580. doi: 10.1016/j.jmb.2017.12.015. Epub 2017 Dec 29.
8
Stem cells in microfluidics.
Biotechnol Prog. 2009 Jan-Feb;25(1):52-60. doi: 10.1002/btpr.171.
9
Fabrication and Applications of Microfluidic Devices: A Review.
Int J Mol Sci. 2021 Feb 18;22(4):2011. doi: 10.3390/ijms22042011.
10
Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
Phys Biol. 2013 Aug;10(4):040301. doi: 10.1088/1478-3975/10/4/040301. Epub 2013 Aug 2.

引用本文的文献

4
Analytical methods in studying cell force sensing: principles, current technologies and perspectives.
Regen Biomater. 2025 Mar 20;12:rbaf007. doi: 10.1093/rb/rbaf007. eCollection 2025.
6
Bone-on-a-Chip Systems for Hematological Cancers.
Biosensors (Basel). 2025 Mar 9;15(3):176. doi: 10.3390/bios15030176.
7
Single-Cell Analysis with Spatiotemporal Control of Local pH.
ACS Meas Sci Au. 2025 Jan 6;5(1):120-129. doi: 10.1021/acsmeasuresciau.4c00079. eCollection 2025 Feb 19.
8
Simple design for membrane-free microphysiological systems to model the blood-tissue barriers.
Organs Chip. 2023 Dec;5. doi: 10.1016/j.ooc.2023.100032. Epub 2023 Dec 6.
10
On-chip non-contact mechanical cell stimulation - quantification of SKOV-3 alignment to suspended microstructures.
Heliyon. 2024 Dec 30;11(1):e41433. doi: 10.1016/j.heliyon.2024.e41433. eCollection 2025 Jan 15.

本文引用的文献

1
Automated high-throughput microchannel assays for cell biology: Operational optimization and characterization.
JALA Charlottesv Va. 2010 Feb 1;15(1):25-32. doi: 10.1016/j.jala.2009.10.002.
2
From the cellular perspective: exploring differences in the cellular baseline in macroscale and microfluidic cultures.
Integr Biol (Camb). 2009 Feb;1(2):182-95. doi: 10.1039/b814565b. Epub 2009 Jan 8.
3
Human mammary progenitor cell fate decisions are products of interactions with combinatorial microenvironments.
Integr Biol (Camb). 2009 Jan;1(1):70-9. doi: 10.1039/b816472j. Epub 2008 Nov 12.
4
Biological implications of polydimethylsiloxane-based microfluidic cell culture.
Lab Chip. 2009 Aug 7;9(15):2132-9. doi: 10.1039/b903043c. Epub 2009 Jun 4.
5
Growth factors, matrices, and forces combine and control stem cells.
Science. 2009 Jun 26;324(5935):1673-7. doi: 10.1126/science.1171643.
6
Selective and tunable gradient device for cell culture and chemotaxis study.
Lab Chip. 2009 Jun 21;9(12):1797-800. doi: 10.1039/b901613a. Epub 2009 Mar 26.
7
Microfabricated curtains for controlled cell seeding in high throughput microfluidic systems.
Lab Chip. 2009 Jun 21;9(12):1756-62. doi: 10.1039/b819622b. Epub 2009 Mar 20.
8
Engineering microscale cellular niches for three-dimensional multicellular co-cultures.
Lab Chip. 2009 Jun 21;9(12):1740-8. doi: 10.1039/b818401a. Epub 2009 Mar 18.
9
Microfluidic endothelium for studying the intravascular adhesion of metastatic breast cancer cells.
PLoS One. 2009 Jun 1;4(6):e5756. doi: 10.1371/journal.pone.0005756.
10
Hard top soft bottom microfluidic devices for cell culture and chemical analysis.
Anal Chem. 2009 May 15;81(10):3714-22. doi: 10.1021/ac802178u.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验