Department of Biomedical Engineering, Wisconsin Institutes for Medical Research, University of Wisconsin-Madison, 1111 Highland Avenue, Madison, WI 53705, USA.
Chem Soc Rev. 2010 Mar;39(3):1036-48. doi: 10.1039/b909900j. Epub 2010 Feb 1.
Microfluidics has the potential to revolutionize the way we approach cell biology research. The dimensions of microfluidic channels are well suited to the physical scale of biological cells, and the many advantages of microfluidics make it an attractive platform for new techniques in biology. One of the key benefits of microfluidics for basic biology is the ability to control parameters of the cell microenvironment at relevant length and time scales. Considerable progress has been made in the design and use of novel microfluidic devices for culturing cells and for subsequent treatment and analysis. With the recent pace of scientific discovery, it is becoming increasingly important to evaluate existing tools and techniques, and to synthesize fundamental concepts that would further improve the efficiency of biological research at the microscale. This tutorial review integrates fundamental principles from cell biology and local microenvironments with cell culture techniques and concepts in microfluidics. Culturing cells in microscale environments requires knowledge of multiple disciplines including physics, biochemistry, and engineering. We discuss basic concepts related to the physical and biochemical microenvironments of the cell, physicochemical properties of that microenvironment, cell culture techniques, and practical knowledge of microfluidic device design and operation. We also discuss the most recent advances in microfluidic cell culture and their implications on the future of the field. The goal is to guide new and interested researchers to the important areas and challenges facing the scientific community as we strive toward full integration of microfluidics with biology.
微流控技术有可能彻底改变我们进行细胞生物学研究的方式。微流控通道的尺寸非常适合生物细胞的物理尺度,而且微流控技术具有许多优势,使其成为生物学新技术的有吸引力的平台。微流控技术对基础生物学的一个关键好处是能够在相关的长度和时间尺度上控制细胞微环境的参数。在设计和使用用于培养细胞以及随后的处理和分析的新型微流控设备方面已经取得了相当大的进展。随着科学发现的步伐不断加快,评估现有工具和技术并综合基本概念以进一步提高微尺度生物学研究的效率变得越来越重要。本教程综述将细胞生物学和局部微环境的基本原理与微流控中的细胞培养技术和概念相结合。在微尺度环境中培养细胞需要包括物理、生物化学和工程学在内的多个学科的知识。我们讨论了与细胞的物理和生化微环境相关的基本概念、该微环境的物理化学性质、细胞培养技术以及微流控器件设计和操作的实用知识。我们还讨论了微流控细胞培养的最新进展及其对该领域未来的影响。我们的目标是指导新的和有兴趣的研究人员了解科学界面临的重要领域和挑战,因为我们努力将微流控技术与生物学完全融合。