Suppr超能文献

磁共振温度测量法

MR thermometry.

作者信息

Rieke Viola, Butts Pauly Kim

机构信息

Department of Radiology, Stanford University, Stanford, CA 94305-5488, USA.

出版信息

J Magn Reson Imaging. 2008 Feb;27(2):376-90. doi: 10.1002/jmri.21265.

Abstract

Minimally invasive thermal therapy as local treatment of benign and malignant diseases has received increasing interest in recent years. Safety and efficacy of the treatment require accurate temperature measurement throughout the thermal procedure. Noninvasive temperature monitoring is feasible with magnetic resonance (MR) imaging based on temperature-sensitive MR parameters such as the proton resonance frequency (PRF), the diffusion coefficient (D), T1 and T2 relaxation times, magnetization transfer, the proton density, as well as temperature-sensitive contrast agents. In this article the principles of temperature measurements with these methods are reviewed and their usefulness for monitoring in vivo procedures is discussed. Whereas most measurements give a temperature change relative to a baseline condition, temperature-sensitive contrast agents and spectroscopic imaging can provide absolute temperature measurements. The excellent linearity and temperature dependence of the PRF and its near independence of tissue type have made PRF-based phase mapping methods the preferred choice for many in vivo applications. Accelerated MRI imaging techniques for real-time monitoring with the PRF method are discussed. Special attention is paid to acquisition and reconstruction methods for reducing temperature measurement artifacts introduced by tissue motion, which is often unavoidable during in vivo applications.

摘要

近年来,微创热疗作为良性和恶性疾病的局部治疗方法越来越受到关注。该治疗的安全性和有效性要求在整个热疗过程中进行精确的温度测量。基于温度敏感的磁共振(MR)参数,如质子共振频率(PRF)、扩散系数(D)、T1和T2弛豫时间、磁化传递、质子密度以及温度敏感造影剂,利用磁共振成像进行无创温度监测是可行的。本文回顾了这些方法的温度测量原理,并讨论了它们在体内手术监测中的实用性。虽然大多数测量给出的是相对于基线条件的温度变化,但温度敏感造影剂和光谱成像可以提供绝对温度测量。PRF出色的线性和温度依赖性及其对组织类型的近乎独立性,使得基于PRF的相位映射方法成为许多体内应用的首选。讨论了用于PRF方法实时监测的加速MRI成像技术。特别关注用于减少组织运动引入的温度测量伪影的采集和重建方法,在体内应用中组织运动往往是不可避免的。

相似文献

1
MR thermometry.
J Magn Reson Imaging. 2008 Feb;27(2):376-90. doi: 10.1002/jmri.21265.
2
Magnetic resonance thermometry and its biological applications - Physical principles and practical considerations.
Prog Nucl Magn Reson Spectrosc. 2019 Feb;110:34-61. doi: 10.1016/j.pnmrs.2019.01.003. Epub 2019 Jan 31.
3
Magnetic resonance temperature imaging for guidance of thermotherapy.
J Magn Reson Imaging. 2000 Oct;12(4):525-33. doi: 10.1002/1522-2586(200010)12:4<525::aid-jmri3>3.0.co;2-v.
5
MR thermometry for monitoring tumor ablation.
Eur Radiol. 2007 Sep;17(9):2401-10. doi: 10.1007/s00330-007-0646-6. Epub 2007 May 22.
6
Temperature mapping with MR imaging of molecular diffusion: application to hyperthermia.
Radiology. 1989 Jun;171(3):853-7. doi: 10.1148/radiology.171.3.2717764.
7
9
Magnetic resonance temperature imaging.
Int J Hyperthermia. 2005 Sep;21(6):515-31. doi: 10.1080/02656730500133785.
10
Real-time MR temperature mapping of rabbit liver in vivo during thermal ablation.
Magn Reson Med. 2003 Aug;50(2):322-30. doi: 10.1002/mrm.10521.

引用本文的文献

1
Magnetic Resonance Imaging monitoring of histotripsy effects in agar phantom.
Med Phys. 2025 Aug;52(8):e18054. doi: 10.1002/mp.18054.
2
Evaluating the accuracy of the variable flip angle technique for temperature measurement near metallic implants.
Quant Imaging Med Surg. 2025 Aug 1;15(8):7555-7562. doi: 10.21037/qims-24-2140. Epub 2025 Jul 24.
3
Magnetic resonance thermometry in the target volume versus intraluminal probe thermometry for hyperthermia treatment monitoring.
Phys Imaging Radiat Oncol. 2025 Jul 24;35:100812. doi: 10.1016/j.phro.2025.100812. eCollection 2025 Jul.
5
MRI assisted ultrasonic thermometry: a new strategy for non-invasive temperature monitoring in HIFU therapy.
Ultrason Sonochem. 2025 Sep;120:107471. doi: 10.1016/j.ultsonch.2025.107471. Epub 2025 Jul 18.
8
A retraced spiral strategy with semi-automatic deblurring for volumetric thermometry.
Magn Reson Med. 2025 Oct;94(4):1432-1444. doi: 10.1002/mrm.30560. Epub 2025 May 20.

本文引用的文献

1
Referenceless MR thermometry for monitoring thermal ablation in the prostate.
IEEE Trans Med Imaging. 2007 Jun;26(6):813-21. doi: 10.1109/TMI.2007.892647.
3
A new temperature-sensitive contrast mechanism for MRI: Curie temperature transition-based imaging.
Contrast Media Mol Imaging. 2007 Jan-Feb;2(1):50-4. doi: 10.1002/cmmi.120.
5
Monitoring and correcting spatio-temporal variations of the MR scanner's static magnetic field.
MAGMA. 2006 Nov;19(5):223-36. doi: 10.1007/s10334-006-0050-2. Epub 2006 Oct 17.
6
Correction of proton resonance frequency shift temperature maps for magnetic field disturbances caused by breathing.
Phys Med Biol. 2006 Sep 21;51(18):4689-705. doi: 10.1088/0031-9155/51/18/015. Epub 2006 Sep 4.
7
Optimization of self-reference thermometry using complex field estimation.
Magn Reson Med. 2006 Oct;56(4):835-43. doi: 10.1002/mrm.21016.
8
k-space inherited parallel acquisition (KIPA): application on dynamic magnetic resonance imaging thermometry.
Magn Reson Imaging. 2006 Sep;24(7):903-15. doi: 10.1016/j.mri.2006.03.001. Epub 2006 Apr 27.
9
Measurement of regional brain temperature using proton spectroscopic imaging: validation and application to acute ischemic stroke.
Magn Reson Imaging. 2006 Jul;24(6):699-706. doi: 10.1016/j.mri.2006.02.002. Epub 2006 Apr 27.
10
MRI-guided focused ultrasound: methodology and applications.
IEEE Trans Med Imaging. 2006 Jun;25(6):723-31. doi: 10.1109/tmi.2006.873296.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验