Radifar Muhammad, Yuniarti Nunung, Istyastono Enade Perdana
Molecular Modeling Center "MOLMOD.ORG", Yogyakarta, Indonesia.
Bioinformation. 2013;9(6):325-8. doi: 10.6026/97320630009325. Epub 2013 Mar 19.
Structure-based virtual screening (SBVS) methods often rely on docking score. The docking score is an over-simplification of the actual ligand-target binding. Its capability to model and predict the actual binding reality is limited. Recently, interaction fingerprinting (IFP) has come and offered us an alternative way to model reality. IFP provides us an alternate way to examine protein-ligand interactions. The docking score indicates the approximate affinity and IFP shows the interaction specificity. IFP is a method to convert three dimensional (3D) protein-ligand interactions into one dimensional (1D) bitstrings. The bitstrings are subsequently employed to compare the protein-ligand interaction predicted by the docking tool against the reference ligand. These comparisons produce scores that can be used to enhance the quality of SBVS campaigns. However, some IFP tools are either proprietary or using a proprietary library, which limits the access to the tools and the development of customized IFP algorithm. Therefore, we have developed PyPLIF, a Python-based open source tool to analyze IFP. In this article, we describe PyPLIF and its application to enhance the quality of SBVS in order to identify antagonists for estrogen α receptor (ERα).
PyPLIF is freely available at http://code.google.com/p/pyplif.
基于结构的虚拟筛选(SBVS)方法通常依赖对接分数。对接分数是对实际配体 - 靶点结合的过度简化。其对实际结合情况进行建模和预测的能力有限。最近,相互作用指纹(IFP)出现了,为我们提供了一种模拟实际情况的替代方法。IFP为我们提供了一种检查蛋白质 - 配体相互作用的替代方式。对接分数表示近似亲和力,而IFP显示相互作用特异性。IFP是一种将三维(3D)蛋白质 - 配体相互作用转换为一维(1D)位串的方法。随后使用这些位串将对接工具预测的蛋白质 - 配体相互作用与参考配体进行比较。这些比较产生的分数可用于提高SBVS活动的质量。然而,一些IFP工具要么是专有的,要么使用专有库,这限制了对这些工具的访问以及定制IFP算法的开发。因此,我们开发了PyPLIF,一个基于Python的用于分析IFP的开源工具。在本文中,我们描述了PyPLIF及其在提高SBVS质量以鉴定雌激素α受体(ERα)拮抗剂方面的应用。