Suppr超能文献

用于直接带隙多层膜的二硫化钼的空气稳定锂化

Air-Stable Lithiation of MoS for Direct-Bandgap Multilayers.

作者信息

Fu Qi, Zhang Yichi, Shen Jichuang, Hong Siyuan, Wang Jie, Wang Chen, Shen Jingyi, Kong Wei, Zheng Guolin, Yan Jun, Wu Jie, Zheng Changxi

机构信息

School of Physics Research Center for Industries of the Future Department of Physics School of Science Zhejiang University Westlake University Hangzhou Zhejiang 310024 P.R. China.

School of Engineering School of Materials Science and Engineering Westlake University Zhejiang University Hangzhou Zhejiang 310024 P. R. China.

出版信息

Small Sci. 2025 Jun 23;5(9):2500186. doi: 10.1002/smsc.202500186. eCollection 2025 Sep.

Abstract

Due to its sizable direct bandgap and strong light-matter interactions, the preparation of monolayer MoS has attracted significant attention and intensive research efforts. However, multilayer MoS is largely overlooked because of its optically inactive indirect bandgap caused by interlayer coupling. It is highly desirable to modulate and decrease the interlayer coupling so that each layer in multilayer MoS can exhibit a monolayer-like direct-gap behavior. Herein, the nanoprobe-controlled fabrication of LiMoS-based multilayers is demonstrated, exhibiting a direct bandgap and strong photoluminescence emission from tightly bound excitons and trions. The fabrication of LiMoS multilayers is facilitated by the newly developed Li-ion platform, featuring tip-induced Li intercalation, doping patterning with a spatial resolution of 517 nm, air stability, and rewritability. Ultralow frequency Raman characterizations reveal that controlled Li intercalation effectively transforms multilayer MoS into the stack of multiple monolayers, leading to a 26-fold enhancement of photoluminescence compared to a monolayer. The intercalation result is different from existing observations of transforming MoS multilayers into metallic phases. This work not only provides a highly controllable Li-ionic engineering platform for studying Li-material interactions and developing novel ionic electronics but also offers an intriguing direct-bandgap semiconductor for optoelectronic applications.

摘要

由于其具有较大的直接带隙和强烈的光与物质相互作用,单层二硫化钼(MoS)的制备引起了广泛关注并引发了深入的研究。然而,多层二硫化钼却在很大程度上被忽视了,因为层间耦合导致其具有光学非活性的间接带隙。非常希望能够调节并减小层间耦合,以使多层二硫化钼中的每一层都能呈现出类似单层的直接带隙行为。在此,展示了基于纳米探针控制的锂掺杂二硫化钼多层膜的制备,其表现出直接带隙以及来自紧密束缚的激子和三重态激子的强烈光致发光发射。锂掺杂二硫化钼多层膜的制备借助于新开发的锂离子平台得以实现,该平台具有尖端诱导的锂嵌入、空间分辨率为517纳米的掺杂图案化、空气稳定性和可重写性。超低频拉曼表征表明,可控的锂嵌入有效地将多层二硫化钼转变为多个单层的堆叠,与单层相比,光致发光增强了26倍。这种嵌入结果与将二硫化钼多层膜转变为金属相的现有观察结果不同。这项工作不仅为研究锂与材料的相互作用以及开发新型离子电子学提供了一个高度可控的锂离子工程平台,还为光电子应用提供了一种引人关注的直接带隙半导体材料。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e88e/12412521/e26c5a428d77/SMSC-5-2500186-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验