Department of Anaesthesia, General Intensive Care and Pain Management, Medical University of Vienna, Vienna, Austria.
PLoS One. 2013;8(4):e60591. doi: 10.1371/journal.pone.0060591. Epub 2013 Apr 2.
Measurement of partial pressure of oxygen (PO2) at high temporal resolution remains a technological challenge. This study introduces a novel PO2 sensing technology based on Multi-Frequency Phase Fluorimetry (MFPF). The aim was to validate MFPF against polarographic Clark-type electrode (CTE) PO2 measurements.
METHODOLOGY/PRINCIPAL FINDINGS: MFPF technology was first investigated in N = 8 anaesthetised pigs at FIO2 of 0.21, 0.4, 0.6, 0.8 and 1.0. At each FIO2 level, blood samples were withdrawn and PO2 was measured in vitro with MFPF using two FOXY-AL300 probes immediately followed by CTE measurement. Secondly, MFPF-PO2 readings were compared to CTE in an artificial circulatory setup (human packed red blood cells, haematocrit of 30%). The impacts of temperature (20, 30, 40°C) and blood flow (0.8, 1.6, 2.4, 3.2, 4.0 L min(-1)) on MFPF-PO2 measurements were assessed. MFPF response time in the gas- and blood-phase was determined. Porcine MFPF-PO2 ranged from 63 to 749 mmHg; the corresponding CTE samples from 43 to 712 mmHg. Linear regression: CTE = 15.59+1.18MFPF (R(2) = 0.93; P<0.0001). Bland Altman analysis: meandiff 69.2 mmHg, rangediff -50.1/215.6 mmHg, 1.96-SD limits -56.3/194.8 mmHg. In artificial circulatory setup, MFPF-PO2 ranged from 20 to 567 mmHg and CTE samples from 11 to 575 mmHg. Linear regression: CTE = -8.73+1.05MFPF (R(2) = 0.99; P<0.0001). Bland-Altman analysis: meandiff 6.6 mmHg, rangediff -9.7/20.5 mmHg, 1.96-SD limits -12.7/25.8 mmHg. Differences between MFPF and CTE-PO2 due to variations of temperature were less than 6 mmHg (range 0-140 mmHg) and less than 35 mmHg (range 140-750 mmHg); differences due to variations in blood flow were less than 15 mmHg (all P-values>0.05). MFPF response-time (monoexponential) was 1.48±0.26 s for the gas-phase and 1.51±0.20 s for the blood-phase.
CONCLUSIONS/SIGNIFICANCE: MFPF-derived PO2 readings were reproducible and showed excellent correlation and good agreement with Clark-type electrode-based PO2 measurements. There was no relevant impact of temperature and blood flow upon MFPF-PO2 measurements. The response time of the MFPF FOXY-AL300 probe was adequate for real-time sensing in the blood phase.
在高时间分辨率下测量氧分压(PO2)仍然是一项技术挑战。本研究介绍了一种基于多频相位荧光法(MFPF)的新型 PO2 传感技术。目的是将 MFPF 与极谱克拉克型电极(CTE)PO2 测量进行验证。
方法/主要发现:首先,在 FIO2 为 0.21、0.4、0.6、0.8 和 1.0 的情况下,在 8 头麻醉猪中对 MFPF 技术进行了研究。在每个 FIO2 水平下,立即使用两个 FOXY-AL300 探头通过 MFPF 从血液中取出血液样本,并在体外使用 MFPF 进行 PO2 测量,随后立即进行 CTE 测量。其次,在人工循环装置(人类浓缩红细胞,血细胞比容为 30%)中比较了 MFPF-PO2 读数与 CTE。评估了温度(20、30、40°C)和血流量(0.8、1.6、2.4、3.2、4.0 L min(-1))对 MFPF-PO2 测量的影响。确定了 MFPF 在气相和血相中响应时间。猪的 MFPF-PO2 范围为 63 至 749 mmHg;相应的 CTE 样本范围为 43 至 712 mmHg。线性回归:CTE=15.59+1.18MFPF(R(2) = 0.93;P<0.0001)。Bland Altman 分析:平均差异 69.2 mmHg,范围差异 -50.1/215.6 mmHg,1.96-SD 限制 -56.3/194.8 mmHg。在人工循环装置中,MFPF-PO2 范围为 20 至 567 mmHg,CTE 样本范围为 11 至 575 mmHg。线性回归:CTE=-8.73+1.05MFPF(R(2) = 0.99;P<0.0001)。Bland-Altman 分析:平均差异 6.6 mmHg,范围差异 -9.7/20.5 mmHg,1.96-SD 限制 -12.7/25.8 mmHg。由于温度变化导致的 MFPF 和 CTE-PO2 之间的差异小于 6 mmHg(范围 0-140 mmHg)和小于 35 mmHg(范围 140-750 mmHg);由于血流量变化导致的差异小于 15 mmHg(所有 P 值均>0.05)。MFPF 响应时间(单指数)为气相 1.48±0.26 s,血相 1.51±0.20 s。
结论/意义:MFPF 衍生的 PO2 读数具有可重复性,与基于克拉克型电极的 PO2 测量显示出极好的相关性和良好的一致性。温度和血流量对 MFPF-PO2 测量没有显著影响。MFPF FOXY-AL300 探头的响应时间足以满足血液阶段的实时传感要求。