Department of Biology, Hopkins Marine Station, Stanford University, Pacific Grove, CA 93950, USA.
Proc Natl Acad Sci U S A. 2013 Apr 23;110(17):6937-42. doi: 10.1073/pnas.1220673110. Epub 2013 Apr 8.
Rising atmospheric carbon dioxide (CO2) conditions are driving unprecedented changes in seawater chemistry, resulting in reduced pH and carbonate ion concentrations in the Earth's oceans. This ocean acidification has negative but variable impacts on individual performance in many marine species. However, little is known about the adaptive capacity of species to respond to an acidified ocean, and, as a result, predictions regarding future ecosystem responses remain incomplete. Here we demonstrate that ocean acidification generates striking patterns of genome-wide selection in purple sea urchins (Strongylocentrotus purpuratus) cultured under different CO2 levels. We examined genetic change at 19,493 loci in larvae from seven adult populations cultured under realistic future CO2 levels. Although larval development and morphology showed little response to elevated CO2, we found substantial allelic change in 40 functional classes of proteins involving hundreds of loci. Pronounced genetic changes, including excess amino acid replacements, were detected in all populations and occurred in genes for biomineralization, lipid metabolism, and ion homeostasis--gene classes that build skeletons and interact in pH regulation. Such genetic change represents a neglected and important impact of ocean acidification that may influence populations that show few outward signs of response to acidification. Our results demonstrate the capacity for rapid evolution in the face of ocean acidification and show that standing genetic variation could be a reservoir of resilience to climate change in this coastal upwelling ecosystem. However, effective response to strong natural selection demands large population sizes and may be limited in species impacted by other environmental stressors.
大气中二氧化碳(CO2)浓度的升高正在导致海水化学发生前所未有的变化,从而降低了地球海洋的 pH 值和碳酸根离子浓度。这种海洋酸化对许多海洋物种的个体表现产生了负面影响,但变化程度各有不同。然而,对于物种适应酸化海洋的能力知之甚少,因此,对于未来生态系统反应的预测仍然不完整。在这里,我们展示了海洋酸化在不同 CO2 水平下培养的紫色海胆(Strongylocentrotus purpuratus)中产生了惊人的全基因组选择模式。我们在七个成年种群的幼虫中检查了 19493 个基因座的遗传变化,这些幼虫是在现实未来 CO2 水平下培养的。尽管幼虫发育和形态对高 CO2 的反应很小,但我们发现 40 个功能类别的蛋白质中的大量等位基因发生了变化,涉及数百个基因座。在所有种群中都检测到明显的遗传变化,包括氨基酸替换过多,这些变化发生在生物矿化、脂质代谢和离子稳态等基因类别中,这些基因类别构建骨骼并相互作用以调节 pH 值。这种遗传变化代表了海洋酸化的一个被忽视但重要的影响,可能会影响到那些对酸化表现出很少外在反应的种群。我们的研究结果表明,在面临海洋酸化时,生物具有快速进化的能力,并表明在这个沿海上升流生态系统中,遗传上的差异可能是对气候变化的一种恢复力的储备。然而,有效应对强烈的自然选择需要大的种群规模,并且可能会受到受其他环境胁迫影响的物种的限制。