Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada.
PLoS Genet. 2013 Apr;9(4):e1003390. doi: 10.1371/journal.pgen.1003390. Epub 2013 Apr 4.
The evolution of drug resistance in fungal pathogens compromises the efficacy of the limited number of antifungal drugs. Drug combinations have emerged as a powerful strategy to enhance antifungal efficacy and abrogate drug resistance, but the impact on the evolution of drug resistance remains largely unexplored. Targeting the molecular chaperone Hsp90 or its downstream effector, the protein phosphatase calcineurin, abrogates resistance to the most widely deployed antifungals, the azoles, which inhibit ergosterol biosynthesis. Here, we evolved experimental populations of the model yeast Saccharomyces cerevisiae and the leading human fungal pathogen Candida albicans with azole and an inhibitor of Hsp90, geldanamycin, or calcineurin, FK506. To recapitulate a clinical context where Hsp90 or calcineurin inhibitors could be utilized in combination with azoles to render resistant pathogens responsive to treatment, the evolution experiment was initiated with strains that are resistant to azoles in a manner that depends on Hsp90 and calcineurin. Of the 290 lineages initiated, most went extinct, yet 14 evolved resistance to the drug combination. Drug target mutations that conferred resistance to geldanamycin or FK506 were identified and validated in five evolved lineages. Whole-genome sequencing identified mutations in a gene encoding a transcriptional activator of drug efflux pumps, PDR1, and a gene encoding a transcriptional repressor of ergosterol biosynthesis genes, MOT3, that transformed azole resistance of two lineages from dependent on calcineurin to independent of this regulator. Resistance also arose by mutation that truncated the catalytic subunit of calcineurin, and by mutation in LCB1, encoding a sphingolipid biosynthetic enzyme. Genome analysis revealed extensive aneuploidy in four of the C. albicans lineages. Thus, we identify molecular determinants of the transition of azole resistance from calcineurin dependence to independence and establish multiple mechanisms by which resistance to drug combinations evolves, providing a foundation for predicting and preventing the evolution of drug resistance.
真菌病原体耐药性的进化降低了有限数量抗真菌药物的疗效。药物联合已成为增强抗真菌疗效和消除耐药性的有力策略,但对耐药性进化的影响在很大程度上仍未得到探索。靶向分子伴侣 Hsp90 或其下游效应物蛋白磷酸酶 calcineurin,可以消除对最广泛使用的抗真菌药物唑类药物(抑制麦角固醇生物合成)的耐药性。在这里,我们通过实验进化了模型酵母酿酒酵母和主要的人类真菌病原体白色念珠菌的实验种群,这些酵母和真菌对唑类药物和 Hsp90 的抑制剂格尔德霉素或 calcineurin 的抑制剂 FK506 产生了耐药性。为了重现 Hsp90 或 calcineurin 抑制剂与唑类药物联合使用使耐药病原体对治疗有反应的临床环境,该进化实验是从对唑类药物耐药的菌株开始的,这些菌株对唑类药物的耐药性依赖于 Hsp90 和 calcineurin。在启动的 290 个谱系中,大多数谱系灭绝了,但有 14 个谱系进化出了对药物组合的耐药性。在五个进化谱系中鉴定并验证了赋予对格尔德霉素或 FK506 耐药性的药物靶标突变。全基因组测序确定了五个进化谱系中的两个谱系中,一个基因编码药物外排泵转录激活因子 PDR1,另一个基因编码麦角固醇生物合成基因的转录抑制因子 MOT3,这两个基因的突变将唑类药物的耐药性从依赖 calcineurin 转变为不依赖于该调节剂。耐药性也通过 calcineurin 催化亚基的截断突变和编码鞘脂生物合成酶的 LCB1 基因突变而产生。基因组分析显示,在四个白色念珠菌谱系中存在广泛的非整倍体。因此,我们确定了唑类药物耐药性从 calcineurin 依赖性向独立性转变的分子决定因素,并确定了多种产生对药物组合耐药性的机制,为预测和防止耐药性进化提供了基础。