Suppr超能文献

抗真菌药物组合耐药性进化的遗传和基因组结构。

Genetic and genomic architecture of the evolution of resistance to antifungal drug combinations.

机构信息

Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada.

出版信息

PLoS Genet. 2013 Apr;9(4):e1003390. doi: 10.1371/journal.pgen.1003390. Epub 2013 Apr 4.

Abstract

The evolution of drug resistance in fungal pathogens compromises the efficacy of the limited number of antifungal drugs. Drug combinations have emerged as a powerful strategy to enhance antifungal efficacy and abrogate drug resistance, but the impact on the evolution of drug resistance remains largely unexplored. Targeting the molecular chaperone Hsp90 or its downstream effector, the protein phosphatase calcineurin, abrogates resistance to the most widely deployed antifungals, the azoles, which inhibit ergosterol biosynthesis. Here, we evolved experimental populations of the model yeast Saccharomyces cerevisiae and the leading human fungal pathogen Candida albicans with azole and an inhibitor of Hsp90, geldanamycin, or calcineurin, FK506. To recapitulate a clinical context where Hsp90 or calcineurin inhibitors could be utilized in combination with azoles to render resistant pathogens responsive to treatment, the evolution experiment was initiated with strains that are resistant to azoles in a manner that depends on Hsp90 and calcineurin. Of the 290 lineages initiated, most went extinct, yet 14 evolved resistance to the drug combination. Drug target mutations that conferred resistance to geldanamycin or FK506 were identified and validated in five evolved lineages. Whole-genome sequencing identified mutations in a gene encoding a transcriptional activator of drug efflux pumps, PDR1, and a gene encoding a transcriptional repressor of ergosterol biosynthesis genes, MOT3, that transformed azole resistance of two lineages from dependent on calcineurin to independent of this regulator. Resistance also arose by mutation that truncated the catalytic subunit of calcineurin, and by mutation in LCB1, encoding a sphingolipid biosynthetic enzyme. Genome analysis revealed extensive aneuploidy in four of the C. albicans lineages. Thus, we identify molecular determinants of the transition of azole resistance from calcineurin dependence to independence and establish multiple mechanisms by which resistance to drug combinations evolves, providing a foundation for predicting and preventing the evolution of drug resistance.

摘要

真菌病原体耐药性的进化降低了有限数量抗真菌药物的疗效。药物联合已成为增强抗真菌疗效和消除耐药性的有力策略,但对耐药性进化的影响在很大程度上仍未得到探索。靶向分子伴侣 Hsp90 或其下游效应物蛋白磷酸酶 calcineurin,可以消除对最广泛使用的抗真菌药物唑类药物(抑制麦角固醇生物合成)的耐药性。在这里,我们通过实验进化了模型酵母酿酒酵母和主要的人类真菌病原体白色念珠菌的实验种群,这些酵母和真菌对唑类药物和 Hsp90 的抑制剂格尔德霉素或 calcineurin 的抑制剂 FK506 产生了耐药性。为了重现 Hsp90 或 calcineurin 抑制剂与唑类药物联合使用使耐药病原体对治疗有反应的临床环境,该进化实验是从对唑类药物耐药的菌株开始的,这些菌株对唑类药物的耐药性依赖于 Hsp90 和 calcineurin。在启动的 290 个谱系中,大多数谱系灭绝了,但有 14 个谱系进化出了对药物组合的耐药性。在五个进化谱系中鉴定并验证了赋予对格尔德霉素或 FK506 耐药性的药物靶标突变。全基因组测序确定了五个进化谱系中的两个谱系中,一个基因编码药物外排泵转录激活因子 PDR1,另一个基因编码麦角固醇生物合成基因的转录抑制因子 MOT3,这两个基因的突变将唑类药物的耐药性从依赖 calcineurin 转变为不依赖于该调节剂。耐药性也通过 calcineurin 催化亚基的截断突变和编码鞘脂生物合成酶的 LCB1 基因突变而产生。基因组分析显示,在四个白色念珠菌谱系中存在广泛的非整倍体。因此,我们确定了唑类药物耐药性从 calcineurin 依赖性向独立性转变的分子决定因素,并确定了多种产生对药物组合耐药性的机制,为预测和防止耐药性进化提供了基础。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3e3b/3617151/e3a711bdf511/pgen.1003390.g001.jpg

相似文献

1
Genetic and genomic architecture of the evolution of resistance to antifungal drug combinations.
PLoS Genet. 2013 Apr;9(4):e1003390. doi: 10.1371/journal.pgen.1003390. Epub 2013 Apr 4.
3
Hsp90 governs echinocandin resistance in the pathogenic yeast Candida albicans via calcineurin.
PLoS Pathog. 2009 Jul;5(7):e1000532. doi: 10.1371/journal.ppat.1000532. Epub 2009 Jul 31.
4
Metabolic control of antifungal drug resistance.
Fungal Genet Biol. 2010 Feb;47(2):81-93. doi: 10.1016/j.fgb.2009.07.004. Epub 2009 Jul 10.
6
Genetic architecture of Hsp90-dependent drug resistance.
Eukaryot Cell. 2006 Dec;5(12):2184-8. doi: 10.1128/EC.00274-06. Epub 2006 Oct 20.
8
Global analysis of genetic circuitry and adaptive mechanisms enabling resistance to the azole antifungal drugs.
PLoS Genet. 2018 Apr 27;14(4):e1007319. doi: 10.1371/journal.pgen.1007319. eCollection 2018 Apr.
9
Hsp90 governs dispersion and drug resistance of fungal biofilms.
PLoS Pathog. 2011 Sep;7(9):e1002257. doi: 10.1371/journal.ppat.1002257. Epub 2011 Sep 8.
10
UPC2A is required for high-level azole antifungal resistance in Candida glabrata.
Antimicrob Agents Chemother. 2014 Aug;58(8):4543-54. doi: 10.1128/AAC.02217-13. Epub 2014 May 27.

引用本文的文献

2
Potential role of lysine acetylation in the stepwise adaptation of to fluconazole.
Microbiol Spectr. 2025 May 6;13(5):e0279724. doi: 10.1128/spectrum.02797-24. Epub 2025 Apr 15.
3
Public health implications of antibiotic resistance in sewage water: an epidemiological perspective.
Bioresour Bioprocess. 2024 Sep 28;11(1):91. doi: 10.1186/s40643-024-00807-y.
4
Single-cell detection of copy number changes reveals dynamic mechanisms of adaptation to antifungals in Candida albicans.
Nat Microbiol. 2024 Nov;9(11):2923-2938. doi: 10.1038/s41564-024-01795-7. Epub 2024 Sep 3.
6
From cell lines to cancer patients: personalized drug synergy prediction.
Bioinformatics. 2022 Jan 1;40(5). doi: 10.1093/bioinformatics/btae134.
7
Allosteric inhibition of tRNA synthetase Gln4 by N-pyrimidinyl-β-thiophenylacrylamides exerts highly selective antifungal activity.
Cell Chem Biol. 2024 Apr 18;31(4):760-775.e17. doi: 10.1016/j.chembiol.2024.01.010. Epub 2024 Feb 22.
8
Systematic Prediction of Antifungal Drug Synergy by Chemogenomic Screening in .
Front Fungal Biol. 2021 Jul 2;2:683414. doi: 10.3389/ffunb.2021.683414. eCollection 2021.
9
Current Progress in Basic Aspects.
J Fungi (Basel). 2023 Apr 29;9(5):533. doi: 10.3390/jof9050533.

本文引用的文献

1
The 2012 Garrod lecture: discovery of antibacterial drugs in the 21st century.
J Antimicrob Chemother. 2013 Mar;68(3):496-505. doi: 10.1093/jac/dks436. Epub 2012 Nov 6.
2
The stepwise acquisition of fluconazole resistance mutations causes a gradual loss of fitness in Candida albicans.
Mol Microbiol. 2012 Nov;86(3):539-56. doi: 10.1111/j.1365-2958.2012.08210.x. Epub 2012 Aug 28.
3
Tackling human fungal infections.
Science. 2012 May 11;336(6082):647. doi: 10.1126/science.1222236.
4
Fast gapped-read alignment with Bowtie 2.
Nat Methods. 2012 Mar 4;9(4):357-9. doi: 10.1038/nmeth.1923.
5
Evolutionary insight from whole-genome sequencing of experimentally evolved microbes.
Mol Ecol. 2012 May;21(9):2058-77. doi: 10.1111/j.1365-294X.2012.05484.x. Epub 2012 Feb 14.
6
JointSNVMix: a probabilistic model for accurate detection of somatic mutations in normal/tumour paired next-generation sequencing data.
Bioinformatics. 2012 Apr 1;28(7):907-13. doi: 10.1093/bioinformatics/bts053. Epub 2012 Jan 27.
7
Hsp90 molecular chaperone inhibitors: are we there yet?
Clin Cancer Res. 2012 Jan 1;18(1):64-76. doi: 10.1158/1078-0432.CCR-11-1000.
8
Antifungal drug resistance: mechanisms, epidemiology, and consequences for treatment.
Am J Med. 2012 Jan;125(1 Suppl):S3-13. doi: 10.1016/j.amjmed.2011.11.001.
9
Projected life expectancy of people with HIV according to timing of diagnosis.
AIDS. 2012 Jan 28;26(3):335-43. doi: 10.1097/QAD.0b013e32834dcec9.
10
The chemical biology of immunophilin ligands.
Curr Med Chem. 2011;18(35):5355-79. doi: 10.2174/092986711798194342.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验