Robles Maria S, Mann Matthias
Department of Proteomics and Signal Transduction, Max-Planck Institute of Biochemistry, 82152 Martinsried, Germany.
Handb Exp Pharmacol. 2013(217):389-407. doi: 10.1007/978-3-642-25950-0_17.
Circadian clocks are endogenous oscillators that drive the rhythmic expression of a broad array of genes that orchestrate metabolism and physiology. Recent evidence indicates that posttranscriptional and posttranslational mechanisms play essential roles in modulating circadian gene expression, particularly for the molecular mechanism of the clock. In contrast to genetic technologies that have long been used to study circadian biology, proteomic approaches have so far been limited and, if applied at all, have used two-dimensional gel electrophoresis (2-DE). Here, we review the proteomics approaches applied to date in the circadian field, and we also discuss the exciting potential of using cutting-edge proteomics technology in circadian biology. Large-scale, quantitative protein abundance measurements will help to understand to what extent the circadian clock drives system wide rhythms of protein abundance downstream of transcription regulation.
生物钟是内源性振荡器,驱动大量协调新陈代谢和生理功能的基因的节律性表达。最近的证据表明,转录后和翻译后机制在调节生物钟基因表达中起着至关重要的作用,特别是对于生物钟的分子机制。与长期以来用于研究生物钟生物学的遗传技术不同,蛋白质组学方法迄今为止一直受到限制,并且即便有所应用,也只是使用二维凝胶电泳(2-DE)。在这里,我们回顾了迄今为止在生物钟领域应用的蛋白质组学方法,并且我们还讨论了在生物钟生物学中使用前沿蛋白质组学技术的令人兴奋的潜力。大规模、定量的蛋白质丰度测量将有助于了解生物钟在转录调控下游驱动全系统蛋白质丰度节律的程度。