Suppr超能文献

因果网络能告诉我们关于代谢途径的什么信息?

What can causal networks tell us about metabolic pathways?

机构信息

State University of New York at Buffalo, Buffalo, New York, United States of America.

出版信息

PLoS Comput Biol. 2012;8(4):e1002458. doi: 10.1371/journal.pcbi.1002458. Epub 2012 Apr 5.

Abstract

Graphical models describe the linear correlation structure of data and have been used to establish causal relationships among phenotypes in genetic mapping populations. Data are typically collected at a single point in time. Biological processes on the other hand are often non-linear and display time varying dynamics. The extent to which graphical models can recapitulate the architecture of an underlying biological processes is not well understood. We consider metabolic networks with known stoichiometry to address the fundamental question: "What can causal networks tell us about metabolic pathways?". Using data from an Arabidopsis Bay[Formula: see text]Sha population and simulated data from dynamic models of pathway motifs, we assess our ability to reconstruct metabolic pathways using graphical models. Our results highlight the necessity of non-genetic residual biological variation for reliable inference. Recovery of the ordering within a pathway is possible, but should not be expected. Causal inference is sensitive to subtle patterns in the correlation structure that may be driven by a variety of factors, which may not emphasize the substrate-product relationship. We illustrate the effects of metabolic pathway architecture, epistasis and stochastic variation on correlation structure and graphical model-derived networks. We conclude that graphical models should be interpreted cautiously, especially if the implied causal relationships are to be used in the design of intervention strategies.

摘要

图形模型描述了数据的线性相关结构,并已被用于在遗传图谱群体中建立表型之间的因果关系。数据通常是在单个时间点收集的。另一方面,生物过程通常是非线性的,并表现出时变动态。图形模型在多大程度上可以再现潜在生物过程的结构还不是很清楚。我们考虑具有已知化学计量的代谢网络,以解决基本问题:“因果网络能告诉我们关于代谢途径的什么信息?”。我们使用来自拟南芥 Bay[Formula: see text]Sha 群体的数据和途径基序的动态模型模拟数据,评估我们使用图形模型重建代谢途径的能力。我们的结果强调了可靠推断需要非遗传剩余生物变异。虽然可以恢复途径内的排序,但不应期望如此。因果推断对相关结构中的细微模式很敏感,这些模式可能是由多种因素驱动的,这些因素可能不强调底物-产物关系。我们说明了代谢途径结构、上位性和随机变异对相关结构和图形模型衍生网络的影响。我们得出结论,图形模型的解释应该谨慎,特别是如果隐含的因果关系将用于干预策略的设计。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d10d/3320578/ba2299b12155/pcbi.1002458.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验