Kato M, Nishikawa K, Uritani M, Miyazaki M, Takemura S
Department of Molecular Biology, School of Science, Nagoya University, Aichi.
J Biochem. 1990 Feb;107(2):242-7. doi: 10.1093/oxfordjournals.jbchem.a123033.
By utilizing an enzymatically reconstructed tRNA variant containing an altered anticodon sequence, we have examined the different biochemical behavior of translation between the Watson-Crick type and the wobble type base pair interactions at the first anticodon position. We have found that the Watson-Crick type base pair has an advantage in translation in contrast to the wobble type base pair by comparing the efficiency of transpeptidation of native tRNA(Phe) (anticodon; GmAA) with its variant tRNA (anticodon; AAA) in the poly(U)-programmed ribosome system. Thomas et al. [Proc. Natl. Acad. Sci. U.S. (1988) 85, 4242-4246] showed that the wobble codon at the ribosomal A-site accepted its cognate tRNA less efficiently than the Watson-Crick base pairing codon. We report here that the wobble interaction at the ribosomal P-site also affected the rate of translation. This variable translational rate may be a mechanism of gene regulation through preferential codon usage.
通过利用一种含有改变的反密码子序列的酶促重建tRNA变体,我们研究了在第一个反密码子位置上,沃森-克里克型和摆动型碱基对相互作用之间翻译的不同生化行为。通过比较天然tRNA(Phe)(反密码子;GmAA)及其变体tRNA(反密码子;AAA)在聚(U)编程核糖体系统中的转肽效率,我们发现与摆动型碱基对相比,沃森-克里克型碱基对在翻译中具有优势。托马斯等人[《美国国家科学院院刊》(1988年)85, 4242 - 4246]表明,核糖体A位点的摆动密码子比沃森-克里克碱基配对密码子更难接受其同源tRNA。我们在此报告,核糖体P位点的摆动相互作用也影响翻译速率。这种可变的翻译速率可能是通过优先使用密码子进行基因调控的一种机制。