Suppr超能文献

在腕关节屈伸过程中多手指抓握时的握力调节。

Grip-force modulation in multi-finger prehension during wrist flexion and extension.

出版信息

Exp Brain Res. 2013 Jun;227(4):509-22. doi: 10.1007/s00221-013-3527-z. Epub 2013 Apr 30.

Abstract

Extrinsic digit muscles contribute to both fingertip forces and wrist movements (FDP and FPL-flexion, EDC-extension). Hence, it is expected that finger forces depend on the wrist movement and position. We investigated the relation between grip force and wrist kinematics to examine whether and how the force (1) scales with wrist flexion-extension (FE) angle and (2) can be predicted from accelerations induced during FE movement. In one experiment, subjects naturally held an instrumented handle using a prismatic grasp and performed very slow FE movements. In another experiment, the same movement was performed cyclically at three prescribed frequencies. In quasistatic conditions, the grip force remained constant over the majority of the wrist range of motion. During the cyclic movements, the grip force changed. The changes were described with a linear regression model that represents the thumb and virtual finger (VF = four fingers combined) normal forces as the sum of the effects of the object's tangential and radial accelerations and an object-weight-dependent constant term. The model explained 99 % of the variability in the data. The independence of the grip force from wrist position agrees with the theory that the thumb and VF forces are controlled with two neural variables that encode referent coordinates for each digit while accounting for changes in the position dependence of muscle forces, rather than a single neural variable like referent aperture. The results of the cyclical movement study extend the principle of superposition (some complex actions can be decomposed into independently controlled elemental actions) for a motor task involving simultaneous grip-force exertion and wrist motion with significant length changes of the grip-force-producing muscles.

摘要

外在指肌既有助于指尖力,也有助于腕部运动(伸指总肌和屈指浅肌屈曲,指浅屈肌伸展)。因此,预计手指力取决于腕部运动和位置。我们研究了握力与腕部运动学之间的关系,以检验力(1)是否以及如何随腕屈伸角度而变化,(2)能否根据屈伸运动期间产生的加速度来预测。在一项实验中,被试使用棱镜抓握自然地握住装有仪器的手柄,并进行非常缓慢的屈伸运动。在另一项实验中,同样的运动以三个规定的频率周期性地进行。在准静态条件下,握力在大部分腕关节运动范围内保持恒定。在周期性运动中,握力发生了变化。这些变化可以用线性回归模型来描述,该模型将拇指和虚拟手指(VF=四个手指组合)的正压力表示为物体切向和径向加速度的效应之和,以及一个与物体重量相关的常数项。该模型解释了数据中 99%的可变性。握力与腕部位置无关,这与以下理论一致:拇指和 VF 力由两个神经变量控制,这两个神经变量分别为每个手指编码参考坐标,同时考虑肌肉力位置依赖性的变化,而不是像参考开口一样的单个神经变量。周期性运动研究的结果扩展了叠加原理(某些复杂的动作可以分解为独立控制的基本动作),适用于涉及同时施加握力和腕部运动的运动任务,其中握力产生肌肉的长度会发生显著变化。

相似文献

1
Grip-force modulation in multi-finger prehension during wrist flexion and extension.
Exp Brain Res. 2013 Jun;227(4):509-22. doi: 10.1007/s00221-013-3527-z. Epub 2013 Apr 30.
2
Wrist action affects precision grip force.
J Neurophysiol. 1997 Jul;78(1):271-80. doi: 10.1152/jn.1997.78.1.271.
3
Dynamic force-sharing in multi-digit task.
Clin Biomech (Bristol). 2006 Feb;21(2):138-46. doi: 10.1016/j.clinbiomech.2005.08.017. Epub 2005 Oct 12.
4
Digit force adjustments during finger addition/removal in multi-digit prehension.
Exp Brain Res. 2008 Aug;189(3):345-59. doi: 10.1007/s00221-008-1430-9. Epub 2008 Jun 14.
5
The influence of wrist position on individual finger forces during forceful grip.
J Hand Surg Am. 2002 Sep;27(5):886-96. doi: 10.1053/jhsu.2002.35078.
6
Prehension synergies: principle of superposition and hierarchical organization in circular object prehension.
Exp Brain Res. 2007 Jul;180(3):541-56. doi: 10.1007/s00221-007-0872-9. Epub 2007 Feb 6.
7
Stability of the multi-finger prehension synergy studied with transcranial magnetic stimulation.
Exp Brain Res. 2008 Sep;190(2):225-38. doi: 10.1007/s00221-008-1466-x. Epub 2008 Jul 1.
8
Moving a hand-held object: Reconstruction of referent coordinate and apparent stiffness trajectories.
Neuroscience. 2015 Jul 9;298:336-56. doi: 10.1016/j.neuroscience.2015.04.023. Epub 2015 Apr 18.
9
Prehension synergies during smooth changes of the external torque.
Exp Brain Res. 2011 Sep;213(4):493-506. doi: 10.1007/s00221-011-2799-4. Epub 2011 Jul 28.
10
Factors affecting grip force: anatomy, mechanics, and referent configurations.
Exp Brain Res. 2014 Apr;232(4):1219-31. doi: 10.1007/s00221-014-3838-8. Epub 2014 Jan 31.

引用本文的文献

2
Explaining the influence of practice on the grooved pegboard times of older adults: role of force steadiness.
Exp Brain Res. 2024 Aug;242(8):1971-1982. doi: 10.1007/s00221-024-06878-9. Epub 2024 Jun 25.
3
The impact of aging and reaching movements on grip stability control during manual precision tasks.
BMC Geriatr. 2021 Dec 15;21(1):703. doi: 10.1186/s12877-021-02663-3.
4
The effect of wrist posture on extrinsic finger muscle activity during single joint movements.
Sci Rep. 2020 May 20;10(1):8377. doi: 10.1038/s41598-020-65167-x.
6
Control of force during rapid visuomotor force-matching tasks can be described by discrete time PID control algorithms.
Exp Brain Res. 2017 Aug;235(8):2561-2573. doi: 10.1007/s00221-017-4995-3. Epub 2017 May 29.
7
Connecting the wrist to the hand: A simulation study exploring changes in thumb-tip endpoint force following wrist surgery.
J Biomech. 2017 Jun 14;58:97-104. doi: 10.1016/j.jbiomech.2017.04.024. Epub 2017 May 5.
8
Automated pressure map segmentation for quantifying phalangeal kinetics during cylindrical gripping.
Med Eng Phys. 2016 Feb;38(2):72-9. doi: 10.1016/j.medengphy.2015.11.004. Epub 2015 Dec 18.
9
Moving a hand-held object: Reconstruction of referent coordinate and apparent stiffness trajectories.
Neuroscience. 2015 Jul 9;298:336-56. doi: 10.1016/j.neuroscience.2015.04.023. Epub 2015 Apr 18.
10
Factors affecting grip force: anatomy, mechanics, and referent configurations.
Exp Brain Res. 2014 Apr;232(4):1219-31. doi: 10.1007/s00221-014-3838-8. Epub 2014 Jan 31.

本文引用的文献

1
Space and time in the context of equilibrium-point theory.
Wiley Interdiscip Rev Cogn Sci. 2011 May;2(3):287-304. doi: 10.1002/wcs.108. Epub 2010 Aug 31.
2
The leading joint hypothesis for spatial reaching arm motions.
Exp Brain Res. 2013 Feb;224(4):591-603. doi: 10.1007/s00221-012-3335-x. Epub 2012 Dec 11.
3
Grip forces during object manipulation: experiment, mathematical model, and validation.
Exp Brain Res. 2011 Aug;213(1):125-39. doi: 10.1007/s00221-011-2784-y. Epub 2011 Jul 7.
4
Motor synergies and the equilibrium-point hypothesis.
Motor Control. 2010 Jul;14(3):294-322. doi: 10.1123/mcj.14.3.294.
5
Multifinger prehension: an overview.
J Mot Behav. 2008 Sep;40(5):446-76. doi: 10.3200/JMBR.40.5.446-476.
6
A technique to determine friction at the fingertips.
J Appl Biomech. 2008 Feb;24(1):43-50. doi: 10.1123/jab.24.1.43.
7
A general dynamic force distribution algorithm for multifingered grasping.
IEEE Trans Syst Man Cybern B Cybern. 2000;30(1):185-92. doi: 10.1109/3477.826959.
8
Threshold position control of arm movement with anticipatory increase in grip force.
Exp Brain Res. 2007 Jul;181(1):49-67. doi: 10.1007/s00221-007-0901-8. Epub 2007 Mar 6.
9
Internal forces during object manipulation.
Exp Brain Res. 2005 Aug;165(1):69-83. doi: 10.1007/s00221-005-2282-1. Epub 2005 May 24.
10
A central back-coupling hypothesis on the organization of motor synergies: a physical metaphor and a neural model.
Biol Cybern. 2005 Mar;92(3):186-91. doi: 10.1007/s00422-005-0548-0. Epub 2005 Feb 28.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验