Suppr超能文献

蓝细菌中昼夜节律系统赋予的进化适应性增强

An Evolutionary Fitness Enhancement Conferred by the Circadian System in Cyanobacteria.

作者信息

Ma Peijun, Woelfle Mark A, Johnson Carl Hirschie

机构信息

Department of Biological Sciences, Vanderbilt University, Nashville, TN 37204 USA.

出版信息

Chaos Solitons Fractals. 2013 May 1;50:65-74. doi: 10.1016/j.chaos.2012.11.006.

Abstract

Circadian clocks are found in a wide variety of organisms from cyanobacteria to mammals. Many believe that the circadian clock system evolved as an adaption to the daily cycles in light and temperature driven by the rotation of the earth. Studies on the cyanobacterium, PCC 7942, have confirmed that the circadian clock in resonance with environmental cycles confers an adaptive advantage to cyanobacterial strains with different clock properties when grown in competition under light-dark cycles. The results thus far suggest that in a cyclic environment, the cyanobacterial strains whose free running periods are closest to the environmental period are the most fit and the strains lacking a functional circadian clock are at a competitive disadvantage relative to strains with a functional clock. In contrast, the circadian system provides little or no advantage to cyanobacteria grown in competition in constant light. To explain the potential mechanism of this clock-mediated enhancement in fitness in cyanobacteria, several models have been proposed; these include the limiting resource model, the diffusible inhibitor model and the cell-to-cell communication model. None of these models have been excluded by the currently available experimental data and the mechanistic basis of clock-mediated fitness enhancement remains elusive.

摘要

从蓝细菌到哺乳动物等各种各样的生物体中都存在生物钟。许多人认为,生物钟系统是作为对地球自转所驱动的光和温度的日常循环的一种适应而进化的。对蓝细菌集胞藻PCC 7942的研究证实,与环境周期共振的生物钟在明暗循环下竞争生长时,赋予了具有不同生物钟特性的蓝细菌菌株一种适应性优势。迄今为止的结果表明,在周期性环境中,自由运行周期最接近环境周期的蓝细菌菌株最具适应性,而缺乏功能性生物钟的菌株相对于具有功能性生物钟的菌株处于竞争劣势。相比之下,生物钟系统对在持续光照下竞争生长的蓝细菌几乎没有提供优势。为了解释这种生物钟介导的蓝细菌适应性增强的潜在机制,已经提出了几种模型;这些模型包括有限资源模型、可扩散抑制剂模型和细胞间通讯模型。目前可用的实验数据并未排除这些模型中的任何一个,生物钟介导的适应性增强的机制基础仍然难以捉摸。

相似文献

4
Diversity of KaiC-based timing systems in marine Cyanobacteria.海洋蓝细菌中基于KaiC的计时系统的多样性。
Mar Genomics. 2014 Apr;14:3-16. doi: 10.1016/j.margen.2013.12.006. Epub 2014 Jan 3.
5
Minimal tool set for a prokaryotic circadian clock.原核生物钟的最小工具集。
BMC Evol Biol. 2017 Jul 21;17(1):169. doi: 10.1186/s12862-017-0999-7.
6
Circadian Rhythms in Cyanobacteria.蓝藻中的昼夜节律
Microbiol Mol Biol Rev. 2015 Dec;79(4):373-85. doi: 10.1128/MMBR.00036-15.
10
Resonating circadian clocks enhance fitness in cyanobacteria.共振生物钟增强了蓝藻细菌的适应性。
Proc Natl Acad Sci U S A. 1998 Jul 21;95(15):8660-4. doi: 10.1073/pnas.95.15.8660.

引用本文的文献

1
Evaluating the Adaptive Fitness of Circadian Clocks and their Evolution.评估生物钟的适应能力及其进化。
J Biol Rhythms. 2024 Apr;39(2):115-134. doi: 10.1177/07487304231219206. Epub 2024 Jan 7.
3
Protocols for in vitro reconstitution of the cyanobacterial circadian clock.体外重建蓝藻生物钟的方案。
Biopolymers. 2024 Mar;115(2):e23559. doi: 10.1002/bip.23559. Epub 2023 Jul 8.
4
Spectres of Clock Evolution: Past, Present, and Yet to Come.时钟进化的幽灵:过去、现在与未来。
Front Physiol. 2022 Feb 11;12:815847. doi: 10.3389/fphys.2021.815847. eCollection 2021.
9
Non-transcriptional processes in circadian rhythm generation.昼夜节律产生中的非转录过程。
Curr Opin Physiol. 2018 Oct;5:117-132. doi: 10.1016/j.cophys.2018.10.003.
10
Daily rhythmicity in coastal microbial mats.沿海微生物席中的每日节律性。
NPJ Biofilms Microbiomes. 2018 May 15;4:11. doi: 10.1038/s41522-018-0054-5. eCollection 2018.

本文引用的文献

5
Bacterial quorum-sensing network architectures.细菌群体感应网络架构
Annu Rev Genet. 2009;43:197-222. doi: 10.1146/annurev-genet-102108-134304.
9
Contact-dependent inhibition of growth in Escherichia coli.大肠杆菌生长的接触依赖性抑制
Science. 2005 Aug 19;309(5738):1245-8. doi: 10.1126/science.1115109.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验