Division of Cell Biology and Biophysics, School of Biological Sciences, University of Missouri-Kansas City, Kansas City, Missouri, USA.
mBio. 2013 Apr 30;4(3):e00260-13. doi: 10.1128/mBio.00260-13.
Microbes inhabit diverse environmental locations, and many species need to shift their physiology between different niches. To do this effectively requires the accurate sensing of and response to the environment. For pathogens, exposure to light is one major change between a free-living saprophyte lifestyle and causation of disease within the host. However, how light may act as a signal to influence pathogenesis, on the side of either the host or the pathogen, is poorly understood. Research during the last 2 decades has uncovered aspects about the machinery for light sensing in a small number of fungi. Now, Fuller et al. have initiated studies into the role that light and two photosensor homologs play in the behavior of the ubiquitous fungal pathogen Aspergillus fumigatus [K. K. Fuller, C. S. Ringelberg, J. J. Loros, and J. C. Dunlap, mBio 4(2):e00142-13, 2013, doi:10.1128/mBio.00142-13]. Light represses the germination of A. fumigatus spores and enhances resistance to ultraviolet light, oxidative stresses, and cell wall perturbations. The phenotypes of the strains with mutations in the LreA and FphA homologs revealed that these sensors control some, but not all, responses to light. Furthermore, interactions occur between blue and red light signaling pathways, as has been described for a related saprophytic species, Aspergillus nidulans. Genome-wide transcript analyses found that about 2.6% of genes increase or decrease their transcript levels in response to light. This use of A. fumigatus establishes common elements between model filamentous species and pathogenic species, underscoring the benefits of extending photobiology to new species of fungi.
微生物栖息在各种环境场所,许多物种需要在不同小生境之间改变其生理机能。要做到这一点,需要准确感知和响应环境。对于病原体来说,暴露在光线下是从自由生活的腐生物生活方式转变为在宿主体内引起疾病的主要变化之一。然而,光如何作为信号影响发病机制,无论是宿主还是病原体,都知之甚少。在过去的 20 年中,研究人员已经发现了少数真菌中光感应机制的一些方面。现在,Fuller 等人已经开始研究光和两个光传感器同源物在无处不在的真菌病原体烟曲霉行为中的作用 [K. K. Fuller、C. S. Ringelberg、J. J. Loros 和 J. C. Dunlap,mBio 4(2):e00142-13, 2013, doi:10.1128/mBio.00142-13]。光抑制烟曲霉孢子的萌发,并增强对紫外线、氧化应激和细胞壁扰动的抵抗力。在 LreA 和 FphA 同源物突变菌株中的表型揭示了这些传感器控制了一些但不是所有对光的反应。此外,正如相关腐生物种构巢曲霉所描述的那样,蓝、红光信号通路之间发生了相互作用。全基因组转录分析发现,大约 2.6%的基因的转录水平会因光而增加或减少。烟曲霉的这种使用方法确立了模型丝状物种和致病性物种之间的共同要素,强调了将光生物学扩展到新的真菌物种的益处。