Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta T2N 4N1, Canada.
J Neurosci. 2013 May 1;33(18):7811-24. doi: 10.1523/JNEUROSCI.5384-12.2013.
Synaptic transmission and neuronal excitability depend on the concentration of extracellular calcium (Ca), yet repetitive synaptic input is known to decrease Ca in numerous brain regions. In the cerebellar molecular layer, synaptic input reduces Ca by up to 0.4 mm in the vicinity of stellate cell interneurons and Purkinje cell dendrites. The mechanisms used to maintain network excitability and Purkinje cell output in the face of this rapid change in calcium gradient have remained an enigma. Here we use single and dual patch recordings in an in vitro slice preparation of Sprague Dawley rats to investigate the effects of physiological decreases in Ca on the excitability of cerebellar stellate cells and their inhibitory regulation of Purkinje cells. We find that a Ca(v)3-K(v)4 ion channel complex expressed in stellate cells acts as a calcium sensor that responds to a decrease in [Ca]o by dynamically adjusting stellate cell output to maintain inhibitory charge transfer to Purkinje cells. The Ca(v)3-K(v)4 complex thus enables an adaptive regulation of inhibitory input to Purkinje cells during fluctuations in Ca, providing a homeostatic control mechanism to regulate Purkinje cell excitability during repetitive afferent activity.
突触传递和神经元兴奋性依赖于细胞外钙浓度(Ca),然而,已知重复的突触输入会降低许多脑区的Ca。在小脑分子层,突触输入使星状细胞中间神经元和浦肯野细胞树突附近的Ca减少了 0.4 毫米。面对钙梯度的这种快速变化,用于维持网络兴奋性和浦肯野细胞输出的机制仍然是一个谜。在这里,我们使用 Sprague Dawley 大鼠的体外切片制备中的单和双膜片钳记录来研究生理条件下Ca降低对小脑星状细胞兴奋性的影响及其对浦肯野细胞的抑制调节。我们发现,星状细胞中表达的 Ca(v)3-K(v)4 离子通道复合物作为钙传感器,通过动态调节星状细胞输出来响应[Ca]o 的降低,从而维持向浦肯野细胞的抑制性电荷传递。因此,Ca(v)3-K(v)4 复合物在Ca波动期间为浦肯野细胞提供了一种自适应调节抑制性输入的机制,为重复传入活动期间调节浦肯野细胞兴奋性提供了一种同源控制机制。