Suppr超能文献

Aβ(13-23)错误折叠和聚集的分子机制。

Molecular mechanism of misfolding and aggregation of Aβ(13-23).

机构信息

Department of Biomedical Sciences, Creighton University, Omaha, Nebraska 68178, United States.

出版信息

J Phys Chem B. 2013 May 23;117(20):6175-86. doi: 10.1021/jp402938p. Epub 2013 May 15.

Abstract

The misfolding and self-assembly of the amyloid-beta (Aβ) peptide into aggregates is a molecular signature of the development of Alzheimer's disease, but molecular mechanisms of the peptide aggregation remain unknown. Here, we combined Atomic Force Microscopy (AFM) and Molecular Dynamics (MD) simulations to characterize the misfolding process of an Aβ peptide. Dynamic force spectroscopy AFM analysis showed that the peptide forms stable dimers with a lifetime of ∼1 s. During MD simulations, isolated monomers gradually adopt essentially similar nonstructured conformations independent from the initial structure. However, when two monomers approach their structure changes dramatically, and the conformational space for the two monomers become restricted. The arrangement of monomers in antiparallel orientation leads to the cooperative formation of β-sheet conformation. Interactions, including hydrogen bonds, salt bridges, and weakly polar interactions of side chains stabilize the structure of the dimer. Under the applied force, the dimer, as during the AFM experiments, dissociates in a cooperative manner. Thus, misfolding of the Aβ peptide proceeds via the loss of conformational flexibility and formation of stable dimers suggesting their key role in the subsequent Aβ aggregation process.

摘要

淀粉样蛋白-β(Aβ)肽错误折叠和自组装成聚集体是阿尔茨海默病发展的分子特征,但肽聚集的分子机制仍不清楚。在这里,我们结合原子力显微镜(AFM)和分子动力学(MD)模拟来描述 Aβ 肽的错误折叠过程。动态力谱 AFM 分析表明,该肽形成稳定的二聚体,寿命约为 1 秒。在 MD 模拟中,孤立的单体逐渐采用基本上相似的无结构构象,与初始结构无关。然而,当两个单体接近时,它们的结构会发生剧烈变化,两个单体的构象空间受到限制。单体以反平行取向排列导致β-折叠构象的协同形成。氢键、盐桥和侧链的弱极性相互作用稳定了二聚体的结构。在施加的力下,二聚体以协同的方式解离,正如在 AFM 实验中一样。因此,Aβ 肽的错误折叠是通过丧失构象灵活性和形成稳定的二聚体来进行的,这表明它们在随后的 Aβ 聚集过程中起着关键作用。

相似文献

1
Molecular mechanism of misfolding and aggregation of Aβ(13-23).
J Phys Chem B. 2013 May 23;117(20):6175-86. doi: 10.1021/jp402938p. Epub 2013 May 15.
2
The structure of misfolded amyloidogenic dimers: computational analysis of force spectroscopy data.
Biophys J. 2014 Dec 16;107(12):2903-2910. doi: 10.1016/j.bpj.2014.10.053.
3
Aβ monomers transiently sample oligomer and fibril-like configurations: ensemble characterization using a combined MD/NMR approach.
J Mol Biol. 2013 Sep 23;425(18):3338-59. doi: 10.1016/j.jmb.2013.06.021. Epub 2013 Jun 25.
4
Polymorphic structures of Alzheimer's β-amyloid globulomers.
PLoS One. 2011;6(6):e20575. doi: 10.1371/journal.pone.0020575. Epub 2011 Jun 7.
6
Structure, orientation, and surface interaction of Alzheimer amyloid-β peptides on the graphite.
Langmuir. 2012 Apr 24;28(16):6595-605. doi: 10.1021/la3002306. Epub 2012 Apr 9.
7
Structural, morphological, and kinetic studies of β-amyloid peptide aggregation on self-assembled monolayers.
Phys Chem Chem Phys. 2011 Sep 7;13(33):15200-10. doi: 10.1039/c1cp21156k. Epub 2011 Jul 19.
8
Nanoprobing of misfolding and interactions of amyloid β 42 protein.
Nanomedicine. 2014 May;10(4):871-8. doi: 10.1016/j.nano.2013.11.016. Epub 2013 Dec 10.
9
Nano-assembly of amyloid β peptide: role of the hairpin fold.
Sci Rep. 2017 May 24;7(1):2344. doi: 10.1038/s41598-017-02454-0.

引用本文的文献

1
Applying the Atomic Force Microscopy Technique in Medical Sciences-A Narrative Review.
Biomedicines. 2024 Sep 3;12(9):2012. doi: 10.3390/biomedicines12092012.
3
Spontaneous self-assembly of amyloid β (1-40) into dimers.
Nanoscale Adv. 2019 Sep 17;1(10):3892-3899. doi: 10.1039/c9na00380k. eCollection 2019 Oct 9.
4
Piecewise All-Atom SMD Simulations Reveal Key Secondary Structures in Luciferase Unfolding Pathway.
Biophys J. 2020 Dec 1;119(11):2251-2261. doi: 10.1016/j.bpj.2020.10.023. Epub 2020 Oct 30.
6
AFM Probing of Amyloid-Beta 42 Dimers and Trimers.
Front Mol Biosci. 2020 Apr 24;7:69. doi: 10.3389/fmolb.2020.00069. eCollection 2020.
7
Probing the Basis of α-Synuclein Aggregation by Comparing Simulations to Single-Molecule Experiments.
Biophys J. 2019 Sep 17;117(6):1125-1135. doi: 10.1016/j.bpj.2019.08.013. Epub 2019 Aug 16.
8
Friction Determination by Atomic Force Microscopy in Field of Biochemical Science.
Micromachines (Basel). 2018 Jun 21;9(7):313. doi: 10.3390/mi9070313.
9
Probing Intermolecular Interactions within the Amyloid β Trimer Using a Tethered Polymer Nanoarray.
Bioconjug Chem. 2018 Aug 15;29(8):2755-2762. doi: 10.1021/acs.bioconjchem.8b00387. Epub 2018 Jul 18.
10
Strikingly different effects of cholesterol and 7-ketocholesterol on lipid bilayer-mediated aggregation of amyloid beta (1-42).
Biochem Biophys Rep. 2018 Apr 26;14:98-103. doi: 10.1016/j.bbrep.2018.04.007. eCollection 2018 Jul.

本文引用的文献

1
GROMACS 4:  Algorithms for Highly Efficient, Load-Balanced, and Scalable Molecular Simulation.
J Chem Theory Comput. 2008 Mar;4(3):435-47. doi: 10.1021/ct700301q.
2
Distinct dimerization for various alloforms of the amyloid-beta protein: Aβ(1-40), Aβ(1-42), and Aβ(1-40)(D23N).
J Phys Chem B. 2012 Apr 5;116(13):4043-55. doi: 10.1021/jp2126366. Epub 2012 Mar 26.
3
Multidimensional view of amyloid fibril nucleation in atomistic detail.
J Am Chem Soc. 2012 Feb 29;134(8):3886-94. doi: 10.1021/ja210826a. Epub 2012 Feb 16.
6
Monte Carlo study of the formation and conformational properties of dimers of Aβ42 variants.
J Mol Biol. 2011 Jul 8;410(2):357-67. doi: 10.1016/j.jmb.2011.05.014. Epub 2011 May 17.
7
Single-molecule atomic force microscopy force spectroscopy study of Aβ-40 interactions.
Biochemistry. 2011 Jun 14;50(23):5154-62. doi: 10.1021/bi200147a. Epub 2011 May 17.
9
The CLN025 decapeptide retains a β-hairpin conformation in urea and guanidinium chloride.
J Phys Chem B. 2011 May 5;115(17):4971-81. doi: 10.1021/jp111076j. Epub 2011 Apr 11.
10
Soluble amyloid beta-protein dimers isolated from Alzheimer cortex directly induce Tau hyperphosphorylation and neuritic degeneration.
Proc Natl Acad Sci U S A. 2011 Apr 5;108(14):5819-24. doi: 10.1073/pnas.1017033108. Epub 2011 Mar 18.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验