Translational Genomics Research Institute, Neurogenomics Division, Phoenix, AZ 85004, USA.
BMC Genomics. 2013 May 4;14:302. doi: 10.1186/1471-2164-14-302.
The field of cancer genomics has rapidly adopted next-generation sequencing (NGS) in order to study and characterize malignant tumors with unprecedented resolution. In particular for cancer, one is often trying to identify somatic mutations--changes specific to a tumor and not within an individual's germline. However, false positive and false negative detections often result from lack of sufficient variant evidence, contamination of the biopsy by stromal tissue, sequencing errors, and the erroneous classification of germline variation as tumor-specific.
We have developed a generalized Bayesian analysis framework for matched tumor/normal samples with the purpose of identifying tumor-specific alterations such as single nucleotide mutations, small insertions/deletions, and structural variation. We describe our methodology, and discuss its application to other types of paired-tissue analysis such as the detection of loss of heterozygosity as well as allelic imbalance. We also demonstrate the high level of sensitivity and specificity in discovering simulated somatic mutations, for various combinations of a) genomic coverage and b) emulated heterogeneity.
We present a Java-based implementation of our methods named Seurat, which is made available for free academic use. We have demonstrated and reported on the discovery of different types of somatic change by applying Seurat to an experimentally-derived cancer dataset using our methods; and have discussed considerations and practices regarding the accurate detection of somatic events in cancer genomes. Seurat is available at https://sites.google.com/site/seuratsomatic.
癌症基因组学领域已迅速采用下一代测序(NGS),以便以前所未有的分辨率研究和描述恶性肿瘤。特别是对于癌症,人们通常试图识别体细胞突变——肿瘤特有的变化,而不是个体的种系内变化。然而,由于缺乏足够的变异证据、活检组织受到间质组织的污染、测序错误以及种系变异错误地归类为肿瘤特异性,常常会导致假阳性和假阴性检测。
我们开发了一种用于匹配肿瘤/正常样本的广义贝叶斯分析框架,目的是识别肿瘤特异性改变,如单核苷酸突变、小插入/缺失和结构变异。我们描述了我们的方法,并讨论了其在其他类型的配对组织分析中的应用,如杂合性丢失的检测以及等位基因失衡。我们还展示了在发现模拟体细胞突变方面的高灵敏度和特异性,针对基因组覆盖度和模拟异质性的各种组合。
我们提出了一种名为 Seurat 的基于 Java 的方法实现,它可免费供学术使用。我们已经通过应用 Seurat 到使用我们的方法从实验性癌症数据集获得的结果,展示和报告了不同类型的体细胞变化的发现;并讨论了在癌症基因组中准确检测体细胞事件的注意事项和实践。Seurat 可在 https://sites.google.com/site/seuratsomatic 上获得。