Suppr超能文献

一种基于单核苷酸多态性基因分型数据检测异质性肿瘤样本中基因组异常的统计方法。

A statistical approach for detecting genomic aberrations in heterogeneous tumor samples from single nucleotide polymorphism genotyping data.

机构信息

Department of Statistics, University of Oxford, South Parks Road, Oxford, OX1 3TG, UK.

出版信息

Genome Biol. 2010;11(9):R92. doi: 10.1186/gb-2010-11-9-r92. Epub 2010 Sep 21.

Abstract

We describe a statistical method for the characterization of genomic aberrations in single nucleotide polymorphism microarray data acquired from cancer genomes. Our approach allows us to model the joint effect of polyploidy, normal DNA contamination and intra-tumour heterogeneity within a single unified Bayesian framework. We demonstrate the efficacy of our method on numerous datasets including laboratory generated mixtures of normal-cancer cell lines and real primary tumours.

摘要

我们描述了一种用于分析从癌症基因组中获得的单核苷酸多态性微阵列数据中基因组异常的统计方法。我们的方法允许我们在单个统一的贝叶斯框架内对多倍体、正常 DNA 污染和肿瘤内异质性的联合效应进行建模。我们在包括实验室生成的正常-癌细胞系混合物和真实原发性肿瘤在内的多个数据集上证明了我们方法的有效性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1be1/2965384/2f84871188bf/gb-2010-11-9-r92-1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验