Suppr超能文献

瓣叶硬度对动态生物人工心脏瓣膜瓣叶形状的影响。

Effects of Leaflet Stiffness on Dynamic Bioprosthetic Heart Valve Leaflet Shape.

作者信息

Sugimoto Hiroatsu, Sacks Michael S

机构信息

Center for Brand and Product Management, University of Wisconsin, Madison, WI, USA.

出版信息

Cardiovasc Eng Technol. 2013 Mar;4(1):2-15. doi: 10.1007/s13239-013-0117-y.

Abstract

Advances in the development of replacement heart valves require a deeper understanding of the valve dynamics. In the present study, dynamic aortic valve (AV) leaflet geometries were quantified using a structured laser-light imaging system (Iyengar ., ABME 29(11):963-973, 2001). Native AV leaflets were first imaged under simulated physiological flow conditions within a rigid glass conduit with simulated anatomic sinuses. Next, the valve/glass conduit combination was removed from the loop and immersed in a 0.625% aqueous glutaraldehyde solution at room temperature for 24 h to produce a bioprosthetic heart valve (BHV). The BHV leaflets were then re-imaged under identical flow conditions while kept in the same position in the glass conduit to minimize artifacts associated with removal/reinsertion of the valve. We observed that: (1) the native leaflet exhibited small, high frequency shifts in shape; (2) the BHV leaflet demonstrated a more stabile shape, as well as focal regions of prolonged, high curvature; (3) the BHV leaflet opened and closed faster by ~10 ms compared to native leaflet; (4) in both the BHV and native states, the AV opened from basal region leading to free edge (5) when closing, both the native and BHV close with both free edge and circumferential together. The high bending observed in the BHV leaflet correlated with known locations of tissue deterioration previously reported in our laboratory. Thus, in order to minimize leaflet tissue damage, methods of chemical modification utilized in BHVs that maintain leaflet flexibility are necessary to minimize the onset and progression of tissue damage. We conclude that leaflet stiffness can have a considerable effect on dynamic valve motion, and can induce deleterious bending behaviors that may be associated with tissue breakdown and valve failure. Moreover, these unique data can provide much needed quantitative information for computational simulation of heart valve leaflet stiffness on heart valve function.

摘要

人造心脏瓣膜研发的进展需要对瓣膜动力学有更深入的理解。在本研究中,使用结构化激光成像系统对动态主动脉瓣(AV)小叶几何形状进行了量化(Iyengar等人,《人工生物医学工程》29(11):963 - 973,2001)。首先,在具有模拟解剖窦的刚性玻璃管道内,在模拟生理流动条件下对天然AV小叶进行成像。接下来,将瓣膜/玻璃管道组合从回路中取出,在室温下浸入0.625%的戊二醛水溶液中24小时,以制作生物人工心脏瓣膜(BHV)。然后,在相同的流动条件下,将BHV小叶保持在玻璃管道中的相同位置进行重新成像,以尽量减少与瓣膜取出/重新插入相关的伪影。我们观察到:(1)天然小叶在形状上表现出小的高频变化;(2)BHV小叶呈现出更稳定的形状,以及延长的高曲率焦点区域;(3)与天然小叶相比,BHV小叶打开和关闭速度快约10毫秒;(4)在BHV和天然状态下,AV均从基部区域向自由边缘打开;(5)关闭时,天然小叶和BHV小叶的自由边缘和圆周同时关闭。在BHV小叶中观察到的高弯曲与我们实验室先前报道的组织退化的已知位置相关。因此,为了使小叶组织损伤最小化,在BHV中使用保持小叶柔韧性的化学修饰方法对于最小化组织损伤的发生和进展是必要的。我们得出结论,小叶刚度可对瓣膜动态运动产生相当大的影响,并可引发可能与组织破坏和瓣膜失效相关的有害弯曲行为。此外,这些独特的数据可为心脏瓣膜小叶刚度对心脏瓣膜功能的计算模拟提供急需的定量信息。

相似文献

1
Effects of Leaflet Stiffness on Dynamic Bioprosthetic Heart Valve Leaflet Shape.
Cardiovasc Eng Technol. 2013 Mar;4(1):2-15. doi: 10.1007/s13239-013-0117-y.
2
Simulating the time evolving geometry, mechanical properties, and fibrous structure of bioprosthetic heart valve leaflets under cyclic loading.
J Mech Behav Biomed Mater. 2021 Nov;123:104745. doi: 10.1016/j.jmbbm.2021.104745. Epub 2021 Aug 19.
5
Dynamic simulation pericardial bioprosthetic heart valve function.
J Biomech Eng. 2006 Oct;128(5):717-24. doi: 10.1115/1.2244578.
6
Bioprosthetic heart valve leaflet motion monitored by dual camera stereo photogrammetry.
J Biomech. 2000 Feb;33(2):199-207. doi: 10.1016/s0021-9290(99)00165-7.
7
Simulation of long-term fatigue damage in bioprosthetic heart valves: effects of leaflet and stent elastic properties.
Biomech Model Mechanobiol. 2014 Aug;13(4):759-70. doi: 10.1007/s10237-013-0532-x. Epub 2013 Oct 4.
8
Cavitation Suppression of Bileaflet Mechanical Heart Valves.
Cardiovasc Eng Technol. 2020 Dec;11(6):783-794. doi: 10.1007/s13239-020-00484-w. Epub 2020 Sep 11.
9
Determination of the curvatures and bending strains in open trileaflet heart valves.
Proc Inst Mech Eng H. 1995;209(2):121-8. doi: 10.1243/PIME_PROC_1995_209_329_02.

引用本文的文献

1
Fluid-Structure Interaction Models of Bioprosthetic Heart Valve Dynamics in an Experimental Pulse Duplicator.
Ann Biomed Eng. 2020 May;48(5):1475-1490. doi: 10.1007/s10439-020-02466-4. Epub 2020 Feb 7.
2
Dynamic measurement of centering forces on transvalvular cannulas.
Artif Organs. 2020 Apr;44(4):E150-E160. doi: 10.1111/aor.13597. Epub 2019 Dec 11.
3
Mechanical considerations for polymeric heart valve development: Biomechanics, materials, design and manufacturing.
Biomaterials. 2019 Dec;225:119493. doi: 10.1016/j.biomaterials.2019.119493. Epub 2019 Sep 17.
4
Computational methods for the aortic heart valve and its replacements.
Expert Rev Med Devices. 2017 Nov;14(11):849-866. doi: 10.1080/17434440.2017.1389274. Epub 2017 Oct 23.
5
Recellularization of a novel off-the-shelf valve following xenogenic implantation into the right ventricular outflow tract.
PLoS One. 2017 Aug 1;12(8):e0181614. doi: 10.1371/journal.pone.0181614. eCollection 2017.
6
Biomechanical Behavior of Bioprosthetic Heart Valve Heterograft Tissues: Characterization, Simulation, and Performance.
Cardiovasc Eng Technol. 2016 Dec;7(4):309-351. doi: 10.1007/s13239-016-0276-8. Epub 2016 Aug 9.
8
An immersogeometric variational framework for fluid-structure interaction: application to bioprosthetic heart valves.
Comput Methods Appl Mech Eng. 2015 Feb 1;284:1005-1053. doi: 10.1016/j.cma.2014.10.040.
9
Interlayer micromechanics of the aortic heart valve leaflet.
Biomech Model Mechanobiol. 2014 Aug;13(4):813-26. doi: 10.1007/s10237-013-0536-6. Epub 2013 Nov 30.

本文引用的文献

1
On the in vivo deformation of the mitral valve anterior leaflet: effects of annular geometry and referential configuration.
Ann Biomed Eng. 2012 Jul;40(7):1455-67. doi: 10.1007/s10439-012-0524-5. Epub 2012 Feb 11.
2
Regional analysis of dynamic deformation characteristics of native aortic valve leaflets.
J Biomech. 2011 May 17;44(8):1459-65. doi: 10.1016/j.jbiomech.2011.03.017. Epub 2011 Apr 1.
3
Effects of cyclic flexural fatigue on porcine bioprosthetic heart valve heterograft biomaterials.
J Biomed Mater Res A. 2010 Jul;94(1):205-13. doi: 10.1002/jbm.a.32659.
4
Dynamic deformation characteristics of porcine aortic valve leaflet under normal and hypertensive conditions.
Am J Physiol Heart Circ Physiol. 2010 Feb;298(2):H395-405. doi: 10.1152/ajpheart.00040.2009. Epub 2009 Nov 13.
5
In vivo dynamic deformation of the mitral valve annulus.
Ann Biomed Eng. 2009 Sep;37(9):1757-71. doi: 10.1007/s10439-009-9749-3. Epub 2009 Jul 8.
6
In vivo biomechanical assessment of triglycidylamine crosslinked pericardium.
Biomaterials. 2007 Dec;28(35):5390-8. doi: 10.1016/j.biomaterials.2007.08.021. Epub 2007 Sep 5.
7
Bioprosthetic heart valve heterograft biomaterials: structure, mechanical behavior and computational simulation.
Expert Rev Med Devices. 2006 Nov;3(6):817-34. doi: 10.1586/17434440.3.6.817.
8
Stability and function of glycosaminoglycans in porcine bioprosthetic heart valves.
Biomaterials. 2006 Mar;27(8):1507-18. doi: 10.1016/j.biomaterials.2005.08.003. Epub 2005 Sep 6.
9
Cardiac valves and valvular pathology: update on function, disease, repair, and replacement.
Cardiovasc Pathol. 2005 Jul-Aug;14(4):189-94. doi: 10.1016/j.carpath.2005.03.005.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验