Suppr超能文献

主动脉心脏瓣膜及其置换物的计算方法。

Computational methods for the aortic heart valve and its replacements.

作者信息

Zakerzadeh Rana, Hsu Ming-Chen, Sacks Michael S

机构信息

a Center for Cardiovascular Simulation, Institute for Computational Engineering & Sciences, Department of Biomedical Engineering , The University of Texas at Austin , Austin , TX , USA.

b Department of Mechanical Engineering , Iowa State University , Ames , IA , USA.

出版信息

Expert Rev Med Devices. 2017 Nov;14(11):849-866. doi: 10.1080/17434440.2017.1389274. Epub 2017 Oct 23.

Abstract

Replacement with a prosthetic device remains a major treatment option for the patients suffering from heart valve disease, with prevalence growing resulting from an ageing population. While the most popular replacement heart valve continues to be the bioprosthetic heart valve (BHV), its durability remains limited. There is thus a continued need to develop a general understanding of the underlying mechanisms limiting BHV durability to facilitate development of a more durable prosthesis. In this regard, computational models can play a pivotal role as they can evaluate our understanding of the underlying mechanisms and be used to optimize designs that may not always be intuitive. Areas covered: This review covers recent progress in computational models for the simulation of BHV, with a focus on aortic valve (AV) replacement. Recent contributions in valve geometry, leaflet material models, novel methods for numerical simulation, and applications to BHV optimization are discussed. This information should serve not only to infer reliable and dependable BHV function, but also to establish guidelines and insight for the design of future prosthetic valves by analyzing the influence of design, hemodynamics and tissue mechanics. Expert commentary: The paradigm of predictive modeling of heart valve prosthesis are becoming a reality which can simultaneously improve clinical outcomes and reduce costs. It can also lead to patient-specific valve design.

摘要

对于患有心脏瓣膜疾病的患者而言,使用人工瓣膜进行置换仍然是一种主要的治疗选择,随着人口老龄化,其患病率不断上升。虽然最常用的人工心脏瓣膜仍然是生物人工心脏瓣膜(BHV),但其耐用性仍然有限。因此,持续需要深入了解限制BHV耐用性的潜在机制,以促进开发更耐用的人工瓣膜。在这方面,计算模型可以发挥关键作用,因为它们可以评估我们对潜在机制的理解,并用于优化那些可能并不总是直观的设计。涵盖领域:本综述涵盖了用于模拟BHV的计算模型的最新进展,重点是主动脉瓣(AV)置换。讨论了瓣膜几何形状、瓣叶材料模型、数值模拟新方法以及在BHV优化中的应用等方面的最新贡献。这些信息不仅应有助于推断可靠的BHV功能,还应通过分析设计、血流动力学和组织力学的影响,为未来人工瓣膜的设计建立指导方针和见解。专家评论:心脏瓣膜假体的预测建模范式正在成为现实,这可以同时改善临床结果并降低成本。它还可以实现针对患者的瓣膜设计。

相似文献

1
Computational methods for the aortic heart valve and its replacements.
Expert Rev Med Devices. 2017 Nov;14(11):849-866. doi: 10.1080/17434440.2017.1389274. Epub 2017 Oct 23.
2
Biomechanical Behavior of Bioprosthetic Heart Valve Heterograft Tissues: Characterization, Simulation, and Performance.
Cardiovasc Eng Technol. 2016 Dec;7(4):309-351. doi: 10.1007/s13239-016-0276-8. Epub 2016 Aug 9.
3
Simulating the time evolving geometry, mechanical properties, and fibrous structure of bioprosthetic heart valve leaflets under cyclic loading.
J Mech Behav Biomed Mater. 2021 Nov;123:104745. doi: 10.1016/j.jmbbm.2021.104745. Epub 2021 Aug 19.
5
Simulated bioprosthetic heart valve deformation under quasi-static loading.
J Biomech Eng. 2005 Nov;127(6):905-14. doi: 10.1115/1.2049337.
7
Fluid-Structure Interaction Study of Transcatheter Aortic Valve Dynamics Using Smoothed Particle Hydrodynamics.
Cardiovasc Eng Technol. 2016 Dec;7(4):374-388. doi: 10.1007/s13239-016-0285-7. Epub 2016 Nov 14.
8
In Vitro Validation of a Numerical Simulation of Leaflet Kinematics in a Polymeric Aortic Valve Under Physiological Conditions.
Cardiovasc Eng Technol. 2018 Mar;9(1):42-52. doi: 10.1007/s13239-018-0340-7. Epub 2018 Jan 10.
9
Computational fluid dynamics simulation of transcatheter aortic valve degeneration.
Interact Cardiovasc Thorac Surg. 2009 Aug;9(2):301-8. doi: 10.1510/icvts.2008.200006. Epub 2009 May 4.
10
Evaluation of transcatheter heart valve biomaterials: Computational modeling using bovine and porcine pericardium.
J Mech Behav Biomed Mater. 2019 Sep;97:159-170. doi: 10.1016/j.jmbbm.2019.05.020. Epub 2019 May 17.

引用本文的文献

1
Computational construction and design optimization of a novel tri-tube heart valve.
Biomech Model Mechanobiol. 2025 Jun;24(3):1103-1121. doi: 10.1007/s10237-025-01956-5. Epub 2025 May 26.
2
Fluid-structure interaction simulation of mechanical aortic valves: a narrative review exploring its role in total product life cycle.
Front Med Technol. 2024 Jul 1;6:1399729. doi: 10.3389/fmedt.2024.1399729. eCollection 2024.
3
Artificial Intelligence in Transcatheter Aortic Valve Replacement: Its Current Role and Ongoing Challenges.
Diagnostics (Basel). 2024 Jan 25;14(3):261. doi: 10.3390/diagnostics14030261.
4
Strategies for Development of Synthetic Heart Valve Tissue Engineering Scaffolds.
Prog Mater Sci. 2023 Oct;139. doi: 10.1016/j.pmatsci.2023.101173. Epub 2023 Jul 26.
5
Influence of Polymer Stiffness and Geometric Design on Fluid Mechanics in Tissue-Engineered Pulmonary Valve Scaffolds.
Ann Biomed Eng. 2024 Mar;52(3):575-587. doi: 10.1007/s10439-023-03401-z. Epub 2023 Nov 7.
6
Multiscale structure and function of the aortic valve apparatus.
Physiol Rev. 2024 Oct 1;104(4):1487-1532. doi: 10.1152/physrev.00038.2022. Epub 2023 Sep 21.
7
Functional mechanical behavior of the murine pulmonary heart valve.
Sci Rep. 2023 Aug 8;13(1):12852. doi: 10.1038/s41598-023-40158-w.
8
Latest Developments in Adapting Deep Learning for Assessing TAVR Procedures and Outcomes.
J Clin Med. 2023 Jul 19;12(14):4774. doi: 10.3390/jcm12144774.
10
Study of Biomechanics of the Heart Valve Leaflet Apparatus Using Numerical Simulation Method.
Sovrem Tekhnologii Med. 2022;14(2):6-14. doi: 10.17691/stm2022.14.2.01. Epub 2022 Mar 28.

本文引用的文献

1
Modeling the response of exogenously crosslinked tissue to cyclic loading: The effects of permanent set.
J Mech Behav Biomed Mater. 2017 Nov;75:336-350. doi: 10.1016/j.jmbbm.2017.07.013. Epub 2017 Jul 11.
2
Image-based immersed boundary model of the aortic root.
Med Eng Phys. 2017 Sep;47:72-84. doi: 10.1016/j.medengphy.2017.05.007. Epub 2017 Aug 2.
4
An improved parameter estimation and comparison for soft tissue constitutive models containing an exponential function.
Biomech Model Mechanobiol. 2017 Aug;16(4):1309-1327. doi: 10.1007/s10237-017-0889-3. Epub 2017 Mar 1.
5
Heart Disease and Stroke Statistics-2017 Update: A Report From the American Heart Association.
Circulation. 2017 Mar 7;135(10):e146-e603. doi: 10.1161/CIR.0000000000000485. Epub 2017 Jan 25.
6
Non-linear rotation-free shell finite-element models for aortic heart valves.
J Biomech. 2017 Jan 4;50:56-62. doi: 10.1016/j.jbiomech.2016.11.031. Epub 2016 Nov 14.
7
Biomechanical Behavior of Bioprosthetic Heart Valve Heterograft Tissues: Characterization, Simulation, and Performance.
Cardiovasc Eng Technol. 2016 Dec;7(4):309-351. doi: 10.1007/s13239-016-0276-8. Epub 2016 Aug 9.
8
Computational comparison of aortic root stresses in presence of stentless and stented aortic valve bio-prostheses.
Comput Methods Biomech Biomed Engin. 2017 Feb;20(2):171-181. doi: 10.1080/10255842.2016.1207171. Epub 2016 Jul 26.
9
Simulated transcatheter aortic valve deformation: A parametric study on the impact of leaflet geometry on valve peak stress.
Int J Numer Method Biomed Eng. 2017 Mar;33(3). doi: 10.1002/cnm.2814. Epub 2016 Jul 26.
10
A Newly Developed Tri-Leaflet Polymeric Heart Valve Prosthesis.
J Mech Med Biol. 2015 Apr;15(2). doi: 10.1142/S0219519415400096. Epub 2015 Mar 30.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验