Suppr超能文献

生物人工主动脉瓣的直径和厚度与瓣叶颤动直接相关:一项实验与计算建模相结合的研究结果

Bioprosthetic aortic valve diameter and thickness are directly related to leaflet fluttering: Results from a combined experimental and computational modeling study.

作者信息

Lee Jae H, Scotten Lawrence N, Hunt Robert, Caranasos Thomas G, Vavalle John P, Griffith Boyce E

机构信息

Department of Mathematics, University of North Carolina, Chapel Hill, NC.

LNS Consulting, Victoria, British Columbia, Canada.

出版信息

JTCVS Open. 2021 Jun;6:60-81. doi: 10.1016/j.xjon.2020.09.002. Epub 2020 Sep 21.

Abstract

OBJECTIVE

Bioprosthetic heart valves (BHVs) are commonly used in surgical and percutaneous valve replacement. The durability of percutaneous valve replacement is unknown, but surgical valves have been shown to require reintervention after 10 to 15 years. Further, smaller-diameter surgical BHVs generally experience higher rates of prosthesis-patient mismatch, which leads to higher rates of failure. Bioprosthetic aortic valves can flutter in systole, and fluttering is associated with fatigue and failure in flexible structures. The determinants of flutter in BHVs have not been well characterized, despite their potential to influence durability.

METHODS

We use an experimental pulse duplicator and a computational fluid-structure interaction model of this system to study the role of device geometry on BHV dynamics. The experimental system mimics physiological conditions, and the computational model enables precise control of leaflet biomechanics and flow conditions to isolate the effects of variations in BHV geometry on leaflet dynamics.

RESULTS

Both experimental and computational models demonstrate that smaller-diameter BHVs yield markedly higher leaflet fluttering frequencies across a range of conditions. The computational model also predicts that fluttering frequency is directly related to leaflet thickness. A scaling model is introduced that rationalizes these findings.

CONCLUSIONS

We systematically characterize the influence of BHV diameter and leaflet thickness on fluttering dynamics. Although this study does not determine how flutter influences device durability, increased flutter in smaller-diameter BHVs may explain how prosthesis-patient mismatch could induce BHV leaflet fatigue and failure. Ultimately, understanding the effects of device geometry on leaflet kinematics may lead to more durable valve replacements.

摘要

目的

生物人工心脏瓣膜(BHVs)常用于外科手术和经皮瓣膜置换。经皮瓣膜置换的耐久性尚不清楚,但已表明外科手术用瓣膜在10至15年后需要再次干预。此外,较小直径的外科手术用BHVs通常假体-患者不匹配率较高,这会导致更高的失败率。生物人工主动脉瓣在收缩期可能会发生颤动,而颤动与柔性结构中的疲劳和失效有关。尽管BHVs颤动的决定因素可能会影响其耐久性,但其尚未得到很好的表征。

方法

我们使用实验性脉搏复制器和该系统的计算流体-结构相互作用模型来研究装置几何形状对BHV动力学的作用。实验系统模拟生理条件,计算模型能够精确控制瓣叶生物力学和流动条件,以分离BHV几何形状变化对瓣叶动力学的影响。

结果

实验模型和计算模型均表明,在一系列条件下,较小直径的BHVs产生的瓣叶颤动频率明显更高。计算模型还预测颤动频率与瓣叶厚度直接相关。引入了一个比例模型来解释这些发现。

结论

我们系统地表征了BHV直径和瓣叶厚度对颤动动力学的影响。尽管本研究未确定颤动如何影响装置耐久性,但较小直径BHVs中增加的颤动可能解释假体-患者不匹配如何导致BHV瓣叶疲劳和失效。最终,了解装置几何形状对瓣叶运动学的影响可能会带来更耐用的瓣膜置换。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9484/9390496/622b9028712c/fx1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验