Moser Felix, Broers Nicolette J, Hartmans Sybe, Tamsir Alvin, Kerkman Richard, Roubos Johannes A, Bovenberg Roel, Voigt Christopher A
Synthetic Biology Center, Department of Biological Engineering, Massachusetts Institute of Technology, Boston, MA 02139, USA.
ACS Synth Biol. 2012 Nov 16;1(11):555-64. doi: 10.1021/sb3000832. Epub 2012 Nov 5.
Synthetic genetic programs promise to enable novel applications in industrial processes. For such applications, the genetic circuits that compose programs will require fidelity in varying and complex environments. In this work, we report the performance of two synthetic circuits in Escherichia coli under industrially relevant conditions, including the selection of media, strain, and growth rate. We test and compare two transcriptional circuits: an AND and a NOR gate. In E. coli DH10B, the AND gate is inactive in minimal media; activity can be rescued by supplementing the media and transferring the gate into the industrial strain E. coli DS68637 where normal function is observed in minimal media. In contrast, the NOR gate is robust to media composition and functions similarly in both strains. The AND gate is evaluated at three stages of early scale-up: 100 mL shake flask experiments, a 1 mL MTP microreactor, and a 10 L bioreactor. A reference plasmid that constitutively produces a GFP reporter is used to make comparisons of circuit performance across conditions. The AND gate function is quantitatively different at each scale. The output deteriorates late in fermentation after the shift from exponential to constant feed rates, which induces rapid resource depletion and changes in growth rate. In addition, one of the output states of the AND gate failed in the bioreactor, effectively making it only responsive to a single input. Finally, cells carrying the AND gate show considerably less accumulation of biomass. Overall, these results highlight challenges and suggest modified strategies for developing and characterizing genetic circuits that function reliably during fermentation.
合成基因程序有望在工业过程中实现新的应用。对于此类应用,构成程序的基因电路在变化多样且复杂的环境中需要保持保真度。在这项工作中,我们报告了两种合成电路在大肠杆菌中于工业相关条件下的性能,包括培养基、菌株和生长速率的选择。我们测试并比较了两种转录电路:一个与门和一个或非门。在大肠杆菌DH10B中,与门在基本培养基中无活性;通过补充培养基并将该门转移到工业菌株大肠杆菌DS68637中可恢复活性,在基本培养基中能观察到其正常功能。相比之下,或非门对培养基成分具有较强抗性,在两种菌株中的功能相似。在早期扩大规模的三个阶段对与门进行了评估:100毫升摇瓶实验、1毫升多通道微量反应釜和10升生物反应器。使用一个组成型产生绿色荧光蛋白报告基因的参考质粒来比较不同条件下的电路性能。与门功能在每个规模下在数量上都有所不同。在从指数进料速率转变为恒定进料速率后,发酵后期输出变差,这会导致资源迅速耗尽并使生长速率发生变化。此外,与门的一种输出状态在生物反应器中失效,实际上使其仅对单一输入有反应。最后,携带与门的细胞显示出生物量积累明显较少。总体而言,这些结果突出了挑战,并为开发和表征在发酵过程中可靠发挥作用的基因电路提出了改进策略。