Suppr超能文献

使用基于工程化P1的噬菌粒进行可扩展的质粒转移。

Scalable plasmid transfer using engineered P1-based phagemids.

作者信息

Kittleson Joshua T, DeLoache Will, Cheng Hsiao-Ying, Anderson J Christopher

出版信息

ACS Synth Biol. 2012 Dec 21;1(12):583-9. doi: 10.1021/sb300054p. Epub 2012 Aug 30.

Abstract

Dramatic improvements to computational, robotic, and biological tools have enabled genetic engineers to conduct increasingly sophisticated experiments. Further development of biological tools offers a route to bypass complex or expensive mechanical operations, thereby reducing the time and cost of highly parallelized experiments. Here, we engineer a system based on bacteriophage P1 to transfer DNA from one E. coli cell to another, bypassing the need for intermediate DNA isolation (e.g., minipreps). To initiate plasmid transfer, we refactored a native phage element into a DNA module capable of heterologously inducing phage lysis. After incorporating known cis-acting elements, we identified a novel cis-acting element that further improves transduction efficiency, exemplifying the ability of synthetic systems to offer insight into native ones. The system transfers DNAs up to 25 kilobases, the maximum assayed size, and operates well at microliter volumes, enabling manipulation of most routinely used DNAs. The system's large DNA capacity and physical coupling of phage particles to phagemid DNA suggest applicability to biosynthetic pathway evolution, functional proteomics, and ultimately, diverse molecular biology operations including DNA fabrication.

摘要

计算、机器人和生物技术工具的显著改进使基因工程师能够开展越来越复杂的实验。生物技术工具的进一步发展提供了一条绕过复杂或昂贵机械操作的途径,从而减少高度并行化实验的时间和成本。在此,我们设计了一种基于噬菌体P1的系统,可将DNA从一个大肠杆菌细胞转移到另一个细胞,无需进行中间DNA分离(例如小量制备)。为启动质粒转移,我们将一个天然噬菌体元件重构为一个能够异源诱导噬菌体裂解的DNA模块。在纳入已知的顺式作用元件后,我们鉴定出一个可进一步提高转导效率的新型顺式作用元件,例证了合成系统为深入了解天然系统提供见解的能力。该系统可转移长达25千碱基的DNA(即所检测的最大尺寸),并在微升体积下运行良好,能够操作大多数常用的DNA。该系统的大DNA容量以及噬菌体颗粒与噬菌粒DNA的物理偶联表明其适用于生物合成途径进化、功能蛋白质组学,最终还适用于包括DNA构建在内的各种分子生物学操作。

相似文献

1
Scalable plasmid transfer using engineered P1-based phagemids.
ACS Synth Biol. 2012 Dec 21;1(12):583-9. doi: 10.1021/sb300054p. Epub 2012 Aug 30.
2
Development of an automated platform for high-throughput P1-phage transduction of Escherichia coli.
J Lab Autom. 2011 Apr;16(2):141-7. doi: 10.1016/j.jala.2010.08.005.
3
E. coli genome manipulation by P1 transduction.
Curr Protoc Mol Biol. 2007 Jul;Chapter 1:1.17.1-1.17.8. doi: 10.1002/0471142727.mb0117s79.
4
Phagemid vectors for phage display: properties, characteristics and construction.
J Mol Biol. 2012 Mar 30;417(3):129-43. doi: 10.1016/j.jmb.2012.01.038. Epub 2012 Jan 30.
6
Partition of nonreplicating DNA by the par system of bacteriophage P1.
J Bacteriol. 1994 Mar;176(6):1782-6. doi: 10.1128/jb.176.6.1782-1786.1994.
7
Assembling new Escherichia coli strains by transduction using phage P1.
Methods Mol Biol. 2011;765:155-69. doi: 10.1007/978-1-61779-197-0_10.
8
Using bacteriophage P1 system to clone high molecular weight genomic DNA.
Methods Enzymol. 1992;216:549-74. doi: 10.1016/0076-6879(92)16049-p.
10
Diversity of P1 phage-like elements in multidrug resistant Escherichia coli.
Sci Rep. 2019 Dec 11;9(1):18861. doi: 10.1038/s41598-019-54895-4.

引用本文的文献

1
The extended mobility of plasmids.
Nucleic Acids Res. 2025 Jul 19;53(14). doi: 10.1093/nar/gkaf652.
3
Precision control of ammonium release in Azotobacter vinelandii.
Microb Biotechnol. 2024 Jul;17(7):e14523. doi: 10.1111/1751-7915.14523.
4
A deoxyviolacein-based transposon insertion vector for pigmented tracer studies.
Microbiologyopen. 2024 Aug;13(4):e1425. doi: 10.1002/mbo3.1425.
5
Interaction of bacteriophage P1 with an epiphytic strain-the role of the interplay between various mobilome elements.
Front Microbiol. 2024 Mar 25;15:1356206. doi: 10.3389/fmicb.2024.1356206. eCollection 2024.
6
An adenine/thymidine-rich region is integral to RepL-mediated DNA replication.
Front Microbiol. 2023 Feb 9;14:1095671. doi: 10.3389/fmicb.2023.1095671. eCollection 2023.
7
P1 Bacteriophage-Enabled Delivery of CRISPR-Cas9 Antimicrobial Activity Against .
ACS Synth Biol. 2023 Mar 17;12(3):709-721. doi: 10.1021/acssynbio.2c00465. Epub 2023 Feb 20.
8
Tail-Engineered Phage P2 Enables Delivery of Antimicrobials into Multiple Gut Pathogens.
ACS Synth Biol. 2023 Feb 17;12(2):596-607. doi: 10.1021/acssynbio.2c00615. Epub 2023 Feb 2.
9
Biological foundations of successful bacteriophage therapy.
EMBO Mol Med. 2022 Jul 7;14(7):e12435. doi: 10.15252/emmm.202012435. Epub 2022 May 27.
10
Inducible directed evolution of complex phenotypes in bacteria.
Nucleic Acids Res. 2022 Jun 10;50(10):e58. doi: 10.1093/nar/gkac094.

本文引用的文献

1
Automated assembly of standard biological parts.
Methods Enzymol. 2011;498:363-97. doi: 10.1016/B978-0-12-385120-8.00016-4.
2
Next-generation sequencing to generate interactome datasets.
Nat Methods. 2011 Jun;8(6):478-80. doi: 10.1038/nmeth.1597. Epub 2011 Apr 24.
3
A system for the continuous directed evolution of biomolecules.
Nature. 2011 Apr 28;472(7344):499-503. doi: 10.1038/nature09929. Epub 2011 Apr 10.
4
Informing biological design by integration of systems and synthetic biology.
Cell. 2011 Mar 18;144(6):855-9. doi: 10.1016/j.cell.2011.02.020.
5
High-throughput metabolic engineering: advances in small-molecule screening and selection.
Annu Rev Biochem. 2010;79:563-90. doi: 10.1146/annurev-biochem-062608-095938.
6
BglBricks: A flexible standard for biological part assembly.
J Biol Eng. 2010 Jan 20;4(1):1. doi: 10.1186/1754-1611-4-1.
7
Genome engineering.
Nat Biotechnol. 2009 Dec;27(12):1151-62. doi: 10.1038/nbt.1590.
8
Yeast two-hybrid, a powerful tool for systems biology.
Int J Mol Sci. 2009 Jun 18;10(6):2763-2788. doi: 10.3390/ijms10062763.
9
The second wave of synthetic biology: from modules to systems.
Nat Rev Mol Cell Biol. 2009 Jun;10(6):410-22. doi: 10.1038/nrm2698.
10
Measuring the activity of BioBrick promoters using an in vivo reference standard.
J Biol Eng. 2009 Mar 20;3:4. doi: 10.1186/1754-1611-3-4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验