Kittleson Joshua T, DeLoache Will, Cheng Hsiao-Ying, Anderson J Christopher
ACS Synth Biol. 2012 Dec 21;1(12):583-9. doi: 10.1021/sb300054p. Epub 2012 Aug 30.
Dramatic improvements to computational, robotic, and biological tools have enabled genetic engineers to conduct increasingly sophisticated experiments. Further development of biological tools offers a route to bypass complex or expensive mechanical operations, thereby reducing the time and cost of highly parallelized experiments. Here, we engineer a system based on bacteriophage P1 to transfer DNA from one E. coli cell to another, bypassing the need for intermediate DNA isolation (e.g., minipreps). To initiate plasmid transfer, we refactored a native phage element into a DNA module capable of heterologously inducing phage lysis. After incorporating known cis-acting elements, we identified a novel cis-acting element that further improves transduction efficiency, exemplifying the ability of synthetic systems to offer insight into native ones. The system transfers DNAs up to 25 kilobases, the maximum assayed size, and operates well at microliter volumes, enabling manipulation of most routinely used DNAs. The system's large DNA capacity and physical coupling of phage particles to phagemid DNA suggest applicability to biosynthetic pathway evolution, functional proteomics, and ultimately, diverse molecular biology operations including DNA fabrication.
计算、机器人和生物技术工具的显著改进使基因工程师能够开展越来越复杂的实验。生物技术工具的进一步发展提供了一条绕过复杂或昂贵机械操作的途径,从而减少高度并行化实验的时间和成本。在此,我们设计了一种基于噬菌体P1的系统,可将DNA从一个大肠杆菌细胞转移到另一个细胞,无需进行中间DNA分离(例如小量制备)。为启动质粒转移,我们将一个天然噬菌体元件重构为一个能够异源诱导噬菌体裂解的DNA模块。在纳入已知的顺式作用元件后,我们鉴定出一个可进一步提高转导效率的新型顺式作用元件,例证了合成系统为深入了解天然系统提供见解的能力。该系统可转移长达25千碱基的DNA(即所检测的最大尺寸),并在微升体积下运行良好,能够操作大多数常用的DNA。该系统的大DNA容量以及噬菌体颗粒与噬菌粒DNA的物理偶联表明其适用于生物合成途径进化、功能蛋白质组学,最终还适用于包括DNA构建在内的各种分子生物学操作。