Department of Mechanical Engineering, University of California Berkeley, California 94720, USA.
Nano Lett. 2013 Jun 12;13(6):2766-70. doi: 10.1021/nl400999f. Epub 2013 May 14.
Remotely manipulating a large number of microscopic objects is important to soft-condensed matter physics, biophysics, and nanotechnology. Optical tweezers and optoelectronic tweezers have been widely used for this purpose but face critical challenges when applied to nanoscale objects, including severe photoinduced damages, undesired ionic convections, or irreversible particle immobilization on surfaces. We report here the first demonstration of a lipid bilayer-integrated optoelectronic tweezers system for simultaneous manipulation of hundreds of 60 nm gold nanoparticles in an arbitrary pattern. We use a fluid lipid bilayer membrane with a ~5 nm thickness supported by a photoconductive electrode to confine the diffusion of chemically tethered nanoparticles in a two-dimensional space. Application of an external a.c. voltage together with patterned light selectively activates the photoconducting electrode that creates strong electric field localized near the surface. The field strength changes most significantly at the activated electrode surface where the particles tethered to the membrane thus experience the strongest dielectrophoretic forces. This design allows us to efficiently achieve dynamic, reversible, and parallel manipulation of many nanoparticles. Our approach to integrate biomolecular structures with optoelectronic devices offers a new platform enabling the study of thermodynamics in many particle systems and the selective transport of nanoscale objects for broad applications in biosensing and cellular mechanotransductions.
远程操控大量微观物体对于软凝聚态物理、生物物理和纳米技术非常重要。光学镊子和光电镊子已被广泛应用于这一目的,但在应用于纳米级物体时面临着关键挑战,包括严重的光诱导损伤、不期望的离子对流或纳米粒子在表面上的不可逆固定。我们在这里报告了第一个脂质双层集成光电镊子系统的演示,该系统可用于以任意图案同时操控数百个 60nm 金纳米粒子。我们使用了一种厚度约为 5nm 的流体脂质双层膜,由光电导电极支撑,以限制化学连接的纳米粒子在二维空间中的扩散。施加外部交流电压和图案化光可选择性地激活光电导电极,在表面附近产生强电场。在激活的电极表面,电场强度变化最大,因此与膜连接的粒子会经历最强的介电泳力。这种设计使我们能够高效地实现许多粒子的动态、可逆和并行操控。我们将生物分子结构与光电设备集成的方法为研究许多粒子系统中的热力学和纳米级物体的选择性传输提供了一个新平台,从而在生物传感和细胞机械转导等广泛领域中具有应用前景。